Matches in SemOpenAlex for { <https://semopenalex.org/work/W2327848082> ?p ?o ?g. }
- W2327848082 endingPage "7267" @default.
- W2327848082 startingPage "7257" @default.
- W2327848082 abstract "This investigation presents the syntheses, crystal structures, magnetic properties, and density functional theoretical modeling of magnetic behavior of two heterobridged μ-phenoxo-μ1,1-azido dinickel(II) compounds [NiII2(L1)2(μ1,1-N3)(N3)(H2O)]·CH3CH2OH (1) and [NiII2(L2)2(μ1,1-N3)(CH3CN)(H2O)](ClO4)·H2O·CH3CN (2), where HL1 and HL2 are the [1 + 1] condensation products of 3-methoxysalicylaldehyde and 1-(2-aminoethyl)-piperidine (for HL1)/4-(2-aminoethyl)-morpholine (for HL2), along with density functional theoretical magneto-structural correlations of μ-phenoxo-μ1,1-azido dinickel(II) systems. Compounds 1 and 2 crystallize in orthorhombic (space group Pbca) and monoclinic (space group P21/c) systems, respectively. The coordination environments of both metal centers are distorted octahedral. The variable-temperature (2–300 K) magnetic susceptibilities at 0.7 T of both compounds have been measured. The interaction between the metal centers is moderately ferromagnetic; J = 16.6 cm–1, g = 2.2, and D = −7.3 cm–1 for 1 and J = 16.92 cm–1, g = 2.2, and D(Ni1) = D(Ni2) = −6.41 cm–1 for 2. Broken symmetry density functional calculations of exchange interaction have been performed on complexes 1 and 2 and provide a good numerical estimate of J values (15.8 cm–1 for 1 and 15.35 cm–1 for 2) compared to experiments. The role of Ni–N bond length asymmetry on the magnetic coupling has been noted by comparing the structures and J values of complexes 1 and 2 together with previously published dimers 3 (Eur. J. Inorg. Chem. 2009, 4982), 4 (Inorg. Chem. 2004, 43, 2427), and 5 (Dalton Trans. 2008, 6539). Our extensive DFT calculations reveal an important clue to the mechanism of coupling where the orientation of the magnetic orbitals seems to differ with asymmetry in the Ni–N bond lengths. This difference in orientation leads to a large change in the overlap integral between the magnetic orbitals and thus the magnetic coupling. DFT calculations have also been extended to develop several magneto-structural correlations in this type of complexes and the correlation aim to focus on the asymmetry of the Ni–N bond lengths reveal that the asymmetry plays a proactive role in governing the magnitude of the coupling. From a completely symmetric Ni–N bond length, two behaviors have been noted: with a decrease in bond length there is an increase in the ferromagnetic coupling, while an increase in the bond lengths leads to a decrease in ferromagnetic interaction. The later correlation is supported by experiments. The magnetic properties of 1, 2, and three previously reported related compounds have been discussed in light of the structural parameters and also in light of the theoretical correlations determined here." @default.
- W2327848082 created "2016-06-24" @default.
- W2327848082 creator A5003052407 @default.
- W2327848082 creator A5004617065 @default.
- W2327848082 creator A5009324355 @default.
- W2327848082 creator A5013903216 @default.
- W2327848082 creator A5024366756 @default.
- W2327848082 creator A5054818199 @default.
- W2327848082 creator A5072231735 @default.
- W2327848082 date "2011-06-23" @default.
- W2327848082 modified "2023-10-16" @default.
- W2327848082 title "Magnetic Exchange Interactions and Magneto-Structural Correlations in Heterobridged μ-Phenoxo-μ<sub>1,1</sub>-Azide Dinickel(II) Compounds: A Combined Experimental and Theoretical Exploration" @default.
- W2327848082 cites W1965284073 @default.
- W2327848082 cites W1967433419 @default.
- W2327848082 cites W1969236989 @default.
- W2327848082 cites W1971222159 @default.
- W2327848082 cites W1971275446 @default.
- W2327848082 cites W1971505963 @default.
- W2327848082 cites W1971858298 @default.
- W2327848082 cites W1976653244 @default.
- W2327848082 cites W1981447699 @default.
- W2327848082 cites W1982768906 @default.
- W2327848082 cites W1983637172 @default.
- W2327848082 cites W1985850180 @default.
- W2327848082 cites W1985887618 @default.
- W2327848082 cites W1986778943 @default.
- W2327848082 cites W1987946870 @default.
- W2327848082 cites W1990698678 @default.
- W2327848082 cites W1994443311 @default.
- W2327848082 cites W1995256991 @default.
- W2327848082 cites W1999304304 @default.
- W2327848082 cites W2005367838 @default.
- W2327848082 cites W2005690673 @default.
- W2327848082 cites W2011013301 @default.
- W2327848082 cites W2020630776 @default.
- W2327848082 cites W2028317291 @default.
- W2327848082 cites W2028902398 @default.
- W2327848082 cites W2035392568 @default.
- W2327848082 cites W2040593414 @default.
- W2327848082 cites W2044814053 @default.
- W2327848082 cites W2044979436 @default.
- W2327848082 cites W2045952721 @default.
- W2327848082 cites W2046095828 @default.
- W2327848082 cites W2047454143 @default.
- W2327848082 cites W2047550653 @default.
- W2327848082 cites W2048903784 @default.
- W2327848082 cites W2054189167 @default.
- W2327848082 cites W2055996848 @default.
- W2327848082 cites W2058210956 @default.
- W2327848082 cites W2060672778 @default.
- W2327848082 cites W2060934556 @default.
- W2327848082 cites W2062682249 @default.
- W2327848082 cites W2065755277 @default.
- W2327848082 cites W2066446597 @default.
- W2327848082 cites W2067502140 @default.
- W2327848082 cites W2070549027 @default.
- W2327848082 cites W2074211668 @default.
- W2327848082 cites W2078146328 @default.
- W2327848082 cites W2083891616 @default.
- W2327848082 cites W2086203750 @default.
- W2327848082 cites W2086372347 @default.
- W2327848082 cites W2087672538 @default.
- W2327848082 cites W2088957240 @default.
- W2327848082 cites W2089740902 @default.
- W2327848082 cites W2090155847 @default.
- W2327848082 cites W2098632908 @default.
- W2327848082 cites W2101253601 @default.
- W2327848082 cites W2115254022 @default.
- W2327848082 cites W2117101978 @default.
- W2327848082 cites W2133023486 @default.
- W2327848082 cites W2134324457 @default.
- W2327848082 cites W2135648388 @default.
- W2327848082 cites W2143981217 @default.
- W2327848082 cites W2144068924 @default.
- W2327848082 cites W2146281029 @default.
- W2327848082 cites W2166591194 @default.
- W2327848082 cites W2172127362 @default.
- W2327848082 cites W2315444667 @default.
- W2327848082 cites W2326949542 @default.
- W2327848082 cites W2334215960 @default.
- W2327848082 cites W2949633158 @default.
- W2327848082 cites W3021006294 @default.
- W2327848082 cites W4233120534 @default.
- W2327848082 cites W4248788339 @default.
- W2327848082 cites W4301521889 @default.
- W2327848082 cites W629563246 @default.
- W2327848082 doi "https://doi.org/10.1021/ic200833y" @default.
- W2327848082 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/21699147" @default.
- W2327848082 hasPublicationYear "2011" @default.
- W2327848082 type Work @default.
- W2327848082 sameAs 2327848082 @default.
- W2327848082 citedByCount "68" @default.
- W2327848082 countsByYear W23278480822012 @default.
- W2327848082 countsByYear W23278480822013 @default.
- W2327848082 countsByYear W23278480822014 @default.
- W2327848082 countsByYear W23278480822015 @default.
- W2327848082 countsByYear W23278480822016 @default.
- W2327848082 countsByYear W23278480822017 @default.