Matches in SemOpenAlex for { <https://semopenalex.org/work/W2327885587> ?p ?o ?g. }
- W2327885587 endingPage "2199" @default.
- W2327885587 startingPage "2186" @default.
- W2327885587 abstract "ConspectusMore than two decades of investigating the chemistry of bistable mechanically interlocked molecules (MIMs), such as rotaxanes and catenanes, has led to the advent of numerous molecular switches that express controlled translational or circumrotational movement on the nanoscale. Directed motion at this scale is an essential feature of many biomolecular assemblies known as molecular machines, which carry out essential life-sustaining functions of the cell. It follows that the use of bistable MIMs as artificial molecular machines (AMMs) has been long anticipated. This objective is rarely achieved, however, because of challenges associated with coupling the directed motions of mechanical switches with other systems on which they can perform work.A natural source of inspiration for designing AMMs is muscle tissue, since it is a material that relies on the hierarchical organization of molecular machines (myosin) and filaments (actin) to produce the force and motion that underpin locomotion, circulation, digestion, and many other essential life processes in humans and other animals. Muscle is characterized at both microscopic and macroscopic length scales by its ability to generate forces that vary the distance between two points at the expense of chemical energy. Artificial muscles that mimic this ability are highly sought for applications involving the transduction of mechanical energy. Rotaxane-based molecular switches are excellent candidates for artificial muscles because their architectures intrinsically possess movable filamentous molecular components. In this Account, we describe (i) the different types of rotaxane “molecular muscle” architectures that express contractile and extensile motion, (ii) the molecular recognition motifs and corresponding stimuli that have been used to actuate them, and (iii) the progress made on integrating and scaling up these motions for potential applications. We identify three types of rotaxane muscles, namely, “daisy chain”, “press”, and “cage” rotaxanes, and discuss their mechanical actuation driven by ions, pH, light, solvents, and redox stimuli. Different applications of these rotaxane-based molecular muscles are possible at various length scales. On a molecular level, they have been harnessed to create adjustable receptors and to control electronic communication between chemical species. On the mesoscale, they have been incorporated into artificial muscle materials that amplify their concerted motions and forces, making future applications at macroscopic length scales look feasible.We emphasize how rotaxanes constitute a remarkably versatile platform for directing force and motion, owing to the wide range of stimuli that can be used to actuate them and their diverse modes of mechanical switching as dictated by the stereochemistry of their mechanical bonds, that is, their mechanostereochemistry. We hope that this Account will serve as an exposition that sets the stage for new applications and materials that exploit the capabilities of rotaxanes to transduce mechanical energy and help in paving the path going forward to genuine AMMs." @default.
- W2327885587 created "2016-06-24" @default.
- W2327885587 creator A5089719740 @default.
- W2327885587 creator A5091907858 @default.
- W2327885587 date "2014-05-30" @default.
- W2327885587 modified "2023-10-16" @default.
- W2327885587 title "Rotaxane-Based Molecular Muscles" @default.
- W2327885587 cites W1972216223 @default.
- W2327885587 cites W1973826334 @default.
- W2327885587 cites W1974971046 @default.
- W2327885587 cites W1979670573 @default.
- W2327885587 cites W1981831598 @default.
- W2327885587 cites W1983735924 @default.
- W2327885587 cites W1987538224 @default.
- W2327885587 cites W1989012666 @default.
- W2327885587 cites W1993873166 @default.
- W2327885587 cites W1996609698 @default.
- W2327885587 cites W1997158083 @default.
- W2327885587 cites W1997858526 @default.
- W2327885587 cites W1998913648 @default.
- W2327885587 cites W2003204040 @default.
- W2327885587 cites W2003430882 @default.
- W2327885587 cites W2005571309 @default.
- W2327885587 cites W2010068085 @default.
- W2327885587 cites W2022381296 @default.
- W2327885587 cites W2023452424 @default.
- W2327885587 cites W2024734721 @default.
- W2327885587 cites W2027491492 @default.
- W2327885587 cites W2034594873 @default.
- W2327885587 cites W2035105825 @default.
- W2327885587 cites W2036182366 @default.
- W2327885587 cites W2036841827 @default.
- W2327885587 cites W2037749244 @default.
- W2327885587 cites W2044912618 @default.
- W2327885587 cites W2048046519 @default.
- W2327885587 cites W2059030348 @default.
- W2327885587 cites W2062625038 @default.
- W2327885587 cites W2064424591 @default.
- W2327885587 cites W2064626416 @default.
- W2327885587 cites W2066744360 @default.
- W2327885587 cites W2067599426 @default.
- W2327885587 cites W2073377748 @default.
- W2327885587 cites W2073654582 @default.
- W2327885587 cites W2076710572 @default.
- W2327885587 cites W2084119594 @default.
- W2327885587 cites W2089184024 @default.
- W2327885587 cites W2090648204 @default.
- W2327885587 cites W2090889637 @default.
- W2327885587 cites W2092103971 @default.
- W2327885587 cites W2106112638 @default.
- W2327885587 cites W2107735122 @default.
- W2327885587 cites W2117991154 @default.
- W2327885587 cites W2122220082 @default.
- W2327885587 cites W2124344736 @default.
- W2327885587 cites W2128492772 @default.
- W2327885587 cites W2130976075 @default.
- W2327885587 cites W2135994829 @default.
- W2327885587 cites W2137833776 @default.
- W2327885587 cites W2141634848 @default.
- W2327885587 cites W2145218595 @default.
- W2327885587 cites W2147440332 @default.
- W2327885587 cites W2153509349 @default.
- W2327885587 cites W2162481105 @default.
- W2327885587 cites W2163480486 @default.
- W2327885587 cites W2163954891 @default.
- W2327885587 cites W2166097094 @default.
- W2327885587 cites W2312795081 @default.
- W2327885587 cites W2320280078 @default.
- W2327885587 cites W2328955275 @default.
- W2327885587 cites W2333961923 @default.
- W2327885587 cites W2782084996 @default.
- W2327885587 cites W4233950745 @default.
- W2327885587 cites W4244569713 @default.
- W2327885587 cites W4246096441 @default.
- W2327885587 doi "https://doi.org/10.1021/ar500138u" @default.
- W2327885587 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24877992" @default.
- W2327885587 hasPublicationYear "2014" @default.
- W2327885587 type Work @default.
- W2327885587 sameAs 2327885587 @default.
- W2327885587 citedByCount "434" @default.
- W2327885587 countsByYear W23278855872014 @default.
- W2327885587 countsByYear W23278855872015 @default.
- W2327885587 countsByYear W23278855872016 @default.
- W2327885587 countsByYear W23278855872017 @default.
- W2327885587 countsByYear W23278855872018 @default.
- W2327885587 countsByYear W23278855872019 @default.
- W2327885587 countsByYear W23278855872020 @default.
- W2327885587 countsByYear W23278855872021 @default.
- W2327885587 countsByYear W23278855872022 @default.
- W2327885587 countsByYear W23278855872023 @default.
- W2327885587 crossrefType "journal-article" @default.
- W2327885587 hasAuthorship W2327885587A5089719740 @default.
- W2327885587 hasAuthorship W2327885587A5091907858 @default.
- W2327885587 hasConcept C121897927 @default.
- W2327885587 hasConcept C12554922 @default.
- W2327885587 hasConcept C139425391 @default.
- W2327885587 hasConcept C154945302 @default.
- W2327885587 hasConcept C160408235 @default.