Matches in SemOpenAlex for { <https://semopenalex.org/work/W2327949797> ?p ?o ?g. }
- W2327949797 endingPage "1474" @default.
- W2327949797 startingPage "1463" @default.
- W2327949797 abstract "As shown in the literature, methods based on multiple templates usually achieve better performance, compared with those using only a single template for processing medical images. However, most existing multi-template based methods simply average or concatenate multiple sets of features extracted from different templates, which potentially ignores important structural information contained in the multi-template data. Accordingly, in this paper, we propose a novel relationship induced multi-template learning method for automatic diagnosis of Alzheimer's disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI), by explicitly modeling structural information in the multi-template data. Specifically, we first nonlinearly register each brain's magnetic resonance (MR) image separately onto multiple pre-selected templates, and then extract multiple sets of features for this MR image. Next, we develop a novel feature selection algorithm by introducing two regularization terms to model the relationships among templates and among individual subjects. Using these selected features corresponding to multiple templates, we then construct multiple support vector machine (SVM) classifiers. Finally, an ensemble classification is used to combine outputs of all SVM classifiers, for achieving the final result. We evaluate our proposed method on 459 subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database, including 97 AD patients, 128 normal controls (NC), 117 progressive MCI (pMCI) patients, and 117 stable MCI (sMCI) patients. The experimental results demonstrate promising classification performance, compared with several state-of-the-art methods for multi-template based AD/MCI classification." @default.
- W2327949797 created "2016-06-24" @default.
- W2327949797 creator A5000937401 @default.
- W2327949797 creator A5018821033 @default.
- W2327949797 creator A5050560717 @default.
- W2327949797 date "2016-06-01" @default.
- W2327949797 modified "2023-10-15" @default.
- W2327949797 title "Relationship Induced Multi-Template Learning for Diagnosis of Alzheimer’s Disease and Mild Cognitive Impairment" @default.
- W2327949797 cites W1480376833 @default.
- W2327949797 cites W1521781547 @default.
- W2327949797 cites W1550721541 @default.
- W2327949797 cites W1762454906 @default.
- W2327949797 cites W1892035143 @default.
- W2327949797 cites W1982145113 @default.
- W2327949797 cites W1983693921 @default.
- W2327949797 cites W1986014162 @default.
- W2327949797 cites W1992395739 @default.
- W2327949797 cites W1998710995 @default.
- W2327949797 cites W1999893542 @default.
- W2327949797 cites W2000292092 @default.
- W2327949797 cites W2001648635 @default.
- W2327949797 cites W2015629132 @default.
- W2327949797 cites W2017865966 @default.
- W2327949797 cites W2030637554 @default.
- W2327949797 cites W2040016992 @default.
- W2327949797 cites W2054540100 @default.
- W2327949797 cites W2061204055 @default.
- W2327949797 cites W2078524519 @default.
- W2327949797 cites W2078648621 @default.
- W2327949797 cites W2078998718 @default.
- W2327949797 cites W2093602450 @default.
- W2327949797 cites W2095377654 @default.
- W2327949797 cites W2103857226 @default.
- W2327949797 cites W2108103428 @default.
- W2327949797 cites W2115167851 @default.
- W2327949797 cites W2119406369 @default.
- W2327949797 cites W2119848633 @default.
- W2327949797 cites W2120111102 @default.
- W2327949797 cites W2123225824 @default.
- W2327949797 cites W2124260943 @default.
- W2327949797 cites W2131006320 @default.
- W2327949797 cites W2132458496 @default.
- W2327949797 cites W2135011268 @default.
- W2327949797 cites W2136573752 @default.
- W2327949797 cites W2136579519 @default.
- W2327949797 cites W2137072914 @default.
- W2327949797 cites W2139212933 @default.
- W2327949797 cites W2143419558 @default.
- W2327949797 cites W2143426320 @default.
- W2327949797 cites W2143826137 @default.
- W2327949797 cites W2146089088 @default.
- W2327949797 cites W2148726987 @default.
- W2327949797 cites W2150176166 @default.
- W2327949797 cites W2150757437 @default.
- W2327949797 cites W2153171432 @default.
- W2327949797 cites W2153635508 @default.
- W2327949797 cites W2156875677 @default.
- W2327949797 cites W2157848968 @default.
- W2327949797 cites W2158485497 @default.
- W2327949797 cites W2160034813 @default.
- W2327949797 cites W2165232124 @default.
- W2327949797 cites W2167277498 @default.
- W2327949797 cites W2167732364 @default.
- W2327949797 cites W2169212716 @default.
- W2327949797 cites W2171350550 @default.
- W2327949797 cites W2171831801 @default.
- W2327949797 cites W2328176404 @default.
- W2327949797 cites W2913340405 @default.
- W2327949797 cites W329738111 @default.
- W2327949797 doi "https://doi.org/10.1109/tmi.2016.2515021" @default.
- W2327949797 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5572669" @default.
- W2327949797 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28113799" @default.
- W2327949797 hasPublicationYear "2016" @default.
- W2327949797 type Work @default.
- W2327949797 sameAs 2327949797 @default.
- W2327949797 citedByCount "151" @default.
- W2327949797 countsByYear W23279497972016 @default.
- W2327949797 countsByYear W23279497972017 @default.
- W2327949797 countsByYear W23279497972018 @default.
- W2327949797 countsByYear W23279497972019 @default.
- W2327949797 countsByYear W23279497972020 @default.
- W2327949797 countsByYear W23279497972021 @default.
- W2327949797 countsByYear W23279497972022 @default.
- W2327949797 countsByYear W23279497972023 @default.
- W2327949797 crossrefType "journal-article" @default.
- W2327949797 hasAuthorship W2327949797A5000937401 @default.
- W2327949797 hasAuthorship W2327949797A5018821033 @default.
- W2327949797 hasAuthorship W2327949797A5050560717 @default.
- W2327949797 hasBestOaLocation W23279497972 @default.
- W2327949797 hasConcept C118552586 @default.
- W2327949797 hasConcept C119857082 @default.
- W2327949797 hasConcept C12267149 @default.
- W2327949797 hasConcept C153180895 @default.
- W2327949797 hasConcept C154945302 @default.
- W2327949797 hasConcept C169900460 @default.
- W2327949797 hasConcept C199360897 @default.
- W2327949797 hasConcept C2984915365 @default.
- W2327949797 hasConcept C41008148 @default.