Matches in SemOpenAlex for { <https://semopenalex.org/work/W2328239358> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2328239358 abstract "Schwarz's Lemma and its generalizations, the Lindel6f Principle and the Principle of Hyperbolic Measure, have provided an important tool for the study of the theory of functions. From a knowledge of the range of values of an analytic function F(z) in a given domain one is able, with their aid, to obtain estimates on the range of values which the function and its derivative can assume in any subdomain of the given domain. However, these estimates are not in general sharp when the domain of definition of the analytic function F(z) is multiply-connected. Thus considerable interest has been aroused in the problem of finding sharp estimates corresponding to the estimates of these fundamental principles. The work of Teichmiiller [13], Grunsky [6] and Ahlfors [1] has led to a method which yields the precise estimates and the associated extremal functions in the case where bounds on the modulus of the function F(z) are given. This method consists in applying Green's formula to the harmonic function log I F(z) 1. However, if the values of F(z) are assumed to lie in a multiply-connected domain, rather than in a circle corresponding to an upper bound on i F(z) 1, the above method for obtaining sharp estimates breaks down. The difficulty lies in the fact that the Green's function of a multiply-connected domain has critical points. In this paper we attack the general problem of obtaining estimates on F(z) when its domain of definition and range of values are both known multiplyconnected domains. We utilize the technique of Teichmfiller, Grunsky and Ahlfors, while at the same time we are able to avoid the difficulties inherent in the general problem by using the variational method developed by Schiffer [11, 12]. Our results will underline the fact that Schiffer's method is by no means restricted to the study of schlicht or p-valued functions. Our approach will also show that many extremal problems in the conformal mapping of multiply-connected domains can be treated in almost the same manner as one treats similar problems for simply-connected domains." @default.
- W2328239358 created "2016-06-24" @default.
- W2328239358 creator A5022040067 @default.
- W2328239358 date "1950-03-01" @default.
- W2328239358 modified "2023-09-25" @default.
- W2328239358 title "The Sharp Form of the Principle of Hyperbolic Measure" @default.
- W2328239358 cites W1736899418 @default.
- W2328239358 cites W2024653154 @default.
- W2328239358 cites W2042666523 @default.
- W2328239358 cites W2055431728 @default.
- W2328239358 cites W2313438947 @default.
- W2328239358 cites W2321736613 @default.
- W2328239358 cites W2322016700 @default.
- W2328239358 doi "https://doi.org/10.2307/1969329" @default.
- W2328239358 hasPublicationYear "1950" @default.
- W2328239358 type Work @default.
- W2328239358 sameAs 2328239358 @default.
- W2328239358 citedByCount "1" @default.
- W2328239358 crossrefType "journal-article" @default.
- W2328239358 hasAuthorship W2328239358A5022040067 @default.
- W2328239358 hasConcept C134306372 @default.
- W2328239358 hasConcept C14036430 @default.
- W2328239358 hasConcept C159985019 @default.
- W2328239358 hasConcept C18903297 @default.
- W2328239358 hasConcept C192562407 @default.
- W2328239358 hasConcept C202444582 @default.
- W2328239358 hasConcept C204323151 @default.
- W2328239358 hasConcept C205979905 @default.
- W2328239358 hasConcept C2777759810 @default.
- W2328239358 hasConcept C2780009758 @default.
- W2328239358 hasConcept C33923547 @default.
- W2328239358 hasConcept C36503486 @default.
- W2328239358 hasConcept C41008148 @default.
- W2328239358 hasConcept C46757340 @default.
- W2328239358 hasConcept C627467 @default.
- W2328239358 hasConcept C77088390 @default.
- W2328239358 hasConcept C77553402 @default.
- W2328239358 hasConcept C78458016 @default.
- W2328239358 hasConcept C86803240 @default.
- W2328239358 hasConceptScore W2328239358C134306372 @default.
- W2328239358 hasConceptScore W2328239358C14036430 @default.
- W2328239358 hasConceptScore W2328239358C159985019 @default.
- W2328239358 hasConceptScore W2328239358C18903297 @default.
- W2328239358 hasConceptScore W2328239358C192562407 @default.
- W2328239358 hasConceptScore W2328239358C202444582 @default.
- W2328239358 hasConceptScore W2328239358C204323151 @default.
- W2328239358 hasConceptScore W2328239358C205979905 @default.
- W2328239358 hasConceptScore W2328239358C2777759810 @default.
- W2328239358 hasConceptScore W2328239358C2780009758 @default.
- W2328239358 hasConceptScore W2328239358C33923547 @default.
- W2328239358 hasConceptScore W2328239358C36503486 @default.
- W2328239358 hasConceptScore W2328239358C41008148 @default.
- W2328239358 hasConceptScore W2328239358C46757340 @default.
- W2328239358 hasConceptScore W2328239358C627467 @default.
- W2328239358 hasConceptScore W2328239358C77088390 @default.
- W2328239358 hasConceptScore W2328239358C77553402 @default.
- W2328239358 hasConceptScore W2328239358C78458016 @default.
- W2328239358 hasConceptScore W2328239358C86803240 @default.
- W2328239358 hasLocation W23282393581 @default.
- W2328239358 hasOpenAccess W2328239358 @default.
- W2328239358 hasPrimaryLocation W23282393581 @default.
- W2328239358 hasRelatedWork W138987025 @default.
- W2328239358 hasRelatedWork W1927751343 @default.
- W2328239358 hasRelatedWork W1965778645 @default.
- W2328239358 hasRelatedWork W1980966506 @default.
- W2328239358 hasRelatedWork W2001730203 @default.
- W2328239358 hasRelatedWork W2008407124 @default.
- W2328239358 hasRelatedWork W2024944339 @default.
- W2328239358 hasRelatedWork W2051276402 @default.
- W2328239358 hasRelatedWork W2058865775 @default.
- W2328239358 hasRelatedWork W2059550302 @default.
- W2328239358 hasRelatedWork W2144777284 @default.
- W2328239358 hasRelatedWork W2195033590 @default.
- W2328239358 hasRelatedWork W2315344479 @default.
- W2328239358 hasRelatedWork W2320420925 @default.
- W2328239358 hasRelatedWork W2322006997 @default.
- W2328239358 hasRelatedWork W3033324390 @default.
- W2328239358 hasRelatedWork W30586996 @default.
- W2328239358 hasRelatedWork W3081148232 @default.
- W2328239358 hasRelatedWork W46705755 @default.
- W2328239358 hasRelatedWork W165057757 @default.
- W2328239358 isParatext "false" @default.
- W2328239358 isRetracted "false" @default.
- W2328239358 magId "2328239358" @default.
- W2328239358 workType "article" @default.