Matches in SemOpenAlex for { <https://semopenalex.org/work/W2328264181> ?p ?o ?g. }
- W2328264181 endingPage "21717" @default.
- W2328264181 startingPage "21706" @default.
- W2328264181 abstract "Octahedral monomeric and dimeric iron oxide clusters represent the basic units in many iron oxide and oxide-hydroxide minerals. In this paper, we provide a detailed theoretical analysis of the structural and optical properties of the most important of these clusters in a vacuum and in an aqueous environment. An evaluation of various computational methods was performed on the experimentally well-known monomer [Fe(H2O)6]3+, and it is found that all methods provide similar and reliable structures. Most density functional theory (DFT) methods reasonably reproduce the spin-forbidden sextet–quartet d–d transition energy, which also resembles the lowest transition energies in many infinite octahedral iron oxide systems. On the other hand, Hartree–Fock (HF) and MP2 methods significantly overestimate this energy. The ligand-to-metal charge transfer (LMCT) energy is highly sensitive to the method employed, with the closest agreement with experiment provided by the BHandHLYP functional. Thermodynamic property calculations suggest that dimerization reactions starting from [Fe(H2O)6]3+ are highly exothermic in a vacuum. In contrast, these reactions have insignificant energy changes in solution, though the singly μ-oxo bridged dimer is slightly favored. The electrostatic repulsion between two charged monomers hinders their close contact. The singly μ-oxo bridged dimer suffers less from this because of its maximal Fe–Fe distance, which is consistent with the existence of stable crystal structures for this dimer. A comparison between the calculated structures and experimental results suggests that several dimer species coexist in solution. The calculated ferromagnetic and antiferromagnetic states of the dimers are found to have comparable energies and structures. While the singly μ-oxo and doubly μ-hydroxo bridged dimers have spin states that are well separated in energy, the spin states in the triply μ-hydroxo bridged dimer pack closely. The single excitation d–d transition in the dimer structure is comparable in energy to the d–d transition in the monomer, while the double excitation d–d transition, i.e., simultaneous excitation of two iron centers, has a higher excitation energy that is 1.6–2.6 times the single excitation energy but below the LMCT energy. This means that doubly excited states can be populated during the non-radiative relaxation of iron oxide clusters following initial photoexcitation of the LMCT state." @default.
- W2328264181 created "2016-06-24" @default.
- W2328264181 creator A5026490818 @default.
- W2328264181 creator A5064735594 @default.
- W2328264181 creator A5079420990 @default.
- W2328264181 date "2013-10-09" @default.
- W2328264181 modified "2023-09-26" @default.
- W2328264181 title "Computational Modeling of Octahedral Iron Oxide Clusters: Hexaaquairon(III) and Its Dimers" @default.
- W2328264181 cites W1626856962 @default.
- W2328264181 cites W1642551962 @default.
- W2328264181 cites W1672014912 @default.
- W2328264181 cites W1965376404 @default.
- W2328264181 cites W1967315585 @default.
- W2328264181 cites W1970292201 @default.
- W2328264181 cites W1975090260 @default.
- W2328264181 cites W1978118116 @default.
- W2328264181 cites W1981368803 @default.
- W2328264181 cites W1981429351 @default.
- W2328264181 cites W1981466714 @default.
- W2328264181 cites W1982356449 @default.
- W2328264181 cites W1984412504 @default.
- W2328264181 cites W1986293997 @default.
- W2328264181 cites W1990312093 @default.
- W2328264181 cites W1996895998 @default.
- W2328264181 cites W2003500732 @default.
- W2328264181 cites W2008423326 @default.
- W2328264181 cites W2008602928 @default.
- W2328264181 cites W2009807916 @default.
- W2328264181 cites W2018037569 @default.
- W2328264181 cites W2018196912 @default.
- W2328264181 cites W2023271753 @default.
- W2328264181 cites W2030687437 @default.
- W2328264181 cites W2032719166 @default.
- W2328264181 cites W2032906935 @default.
- W2328264181 cites W2033268202 @default.
- W2328264181 cites W2039832268 @default.
- W2328264181 cites W2040874594 @default.
- W2328264181 cites W2041421560 @default.
- W2328264181 cites W2047924371 @default.
- W2328264181 cites W2048112182 @default.
- W2328264181 cites W2048215810 @default.
- W2328264181 cites W2048451151 @default.
- W2328264181 cites W2055563809 @default.
- W2328264181 cites W2059081231 @default.
- W2328264181 cites W2059827995 @default.
- W2328264181 cites W2060512604 @default.
- W2328264181 cites W2060623225 @default.
- W2328264181 cites W2060858284 @default.
- W2328264181 cites W2068617439 @default.
- W2328264181 cites W2069003331 @default.
- W2328264181 cites W2070393246 @default.
- W2328264181 cites W2075954968 @default.
- W2328264181 cites W2079935930 @default.
- W2328264181 cites W2082905252 @default.
- W2328264181 cites W2084919208 @default.
- W2328264181 cites W2085434575 @default.
- W2328264181 cites W2086957099 @default.
- W2328264181 cites W2087469878 @default.
- W2328264181 cites W2092097481 @default.
- W2328264181 cites W2092177659 @default.
- W2328264181 cites W2093395660 @default.
- W2328264181 cites W2102807619 @default.
- W2328264181 cites W2109750100 @default.
- W2328264181 cites W2119492070 @default.
- W2328264181 cites W2120901082 @default.
- W2328264181 cites W2123769438 @default.
- W2328264181 cites W2131546469 @default.
- W2328264181 cites W2143981217 @default.
- W2328264181 cites W2149052333 @default.
- W2328264181 cites W2150195378 @default.
- W2328264181 cites W2150345533 @default.
- W2328264181 cites W2150454975 @default.
- W2328264181 cites W2150697053 @default.
- W2328264181 cites W2151269714 @default.
- W2328264181 cites W2154547690 @default.
- W2328264181 cites W2158950765 @default.
- W2328264181 cites W2953148850 @default.
- W2328264181 cites W3021204293 @default.
- W2328264181 cites W3025432410 @default.
- W2328264181 cites W3139214402 @default.
- W2328264181 cites W4255412919 @default.
- W2328264181 doi "https://doi.org/10.1021/jp408066h" @default.
- W2328264181 hasPublicationYear "2013" @default.
- W2328264181 type Work @default.
- W2328264181 sameAs 2328264181 @default.
- W2328264181 citedByCount "16" @default.
- W2328264181 countsByYear W23282641812014 @default.
- W2328264181 countsByYear W23282641812015 @default.
- W2328264181 countsByYear W23282641812016 @default.
- W2328264181 countsByYear W23282641812017 @default.
- W2328264181 countsByYear W23282641812018 @default.
- W2328264181 countsByYear W23282641812019 @default.
- W2328264181 countsByYear W23282641812022 @default.
- W2328264181 crossrefType "journal-article" @default.
- W2328264181 hasAuthorship W2328264181A5026490818 @default.
- W2328264181 hasAuthorship W2328264181A5064735594 @default.
- W2328264181 hasAuthorship W2328264181A5079420990 @default.
- W2328264181 hasConcept C115624301 @default.