Matches in SemOpenAlex for { <https://semopenalex.org/work/W2328298996> ?p ?o ?g. }
- W2328298996 endingPage "221" @default.
- W2328298996 startingPage "203" @default.
- W2328298996 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 479:203-221 (2013) - DOI: https://doi.org/10.3354/meps10176 Combined spatial and tidal processes identify links between pelagic prey species and seabirds S. L. Cox1,2,*, B. E. Scott1, C. J. Camphuysen3 1School of Biological Sciences, Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK 2School of Marine Science and Engineering (Faculty of Science and Technology), Plymouth University, Drake Circus, Plymouth PL4 8AA, UK 3Netherlands Institute for Sea Research (NIOZ), PO Box 59, 1790 AB Den Burg, Texel, The Netherlands *Email: samantha.cox@plymouth.ac.uk ABSTRACT: To gain further insight into the foraging behaviour of predator species, it is essential that interactions between predators, their prey and the surrounding environment are better understood. The primary purpose of this study was to determine the underlying processes, both physical and biological, driving variation in the times and locations of seabird foraging events. Using fine-scale simultaneous measurements of seabird abundance, prey density and oceanographic variability collected during an at-sea survey in the Firth of Forth region of the North Sea, zero-inflated negative binomial models were applied to identify the underlying processes driving foraging behaviour in 2 seabird species: the common guillemot Uria aalge and the black-legged kittiwake Rissa tridactyla. Both guillemot and kittiwake models showed consistency in their results; specific tidal states and thermal stratification levels explained observed increases in abundance. The secondary purpose of this study was to identify key oceanographic processes driving variability in prey density and determine if these were comparable to those underlying the behaviour of foraging seabirds. Log-transformations of 2 measures of prey density, NASC-40-50MAX and NASC-50-70MAX, were modelled using generalised least squares. Similar tidal conditions and thermal stratification levels explained distributional patterns, suggesting that these processes act to increase prey availability, creating profitable foraging opportunities for predators to exploit. This has been termed the tidal coupling hypothesis and identifies that critical marine habitats occur not only at limited spatial locations but also within specific temporal intervals relating to the tidal cycle. Furthermore, by incorporating this oceanographic influence on foraging habitat, fine-scale predator–prey relationships were also identified. Foraging guillemots and kittiwakes displayed a Type II functional response to increasing values of NASC-40-50MAX. KEY WORDS: Predator-prey interaction · Physical-biological coupling · Spatio-temporal variability · Foraging ecology · Critical marine habitat · Trophic relationship Full text in pdf format Supplementary material PreviousNextCite this article as: Cox SL, Scott BE, Camphuysen CJ (2013) Combined spatial and tidal processes identify links between pelagic prey species and seabirds. Mar Ecol Prog Ser 479:203-221. https://doi.org/10.3354/meps10176 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 479. Online publication date: April 08, 2013 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2013 Inter-Research." @default.
- W2328298996 created "2016-06-24" @default.
- W2328298996 creator A5051689046 @default.
- W2328298996 creator A5076854239 @default.
- W2328298996 creator A5081397381 @default.
- W2328298996 date "2013-04-08" @default.
- W2328298996 modified "2023-10-16" @default.
- W2328298996 title "Combined spatial and tidal processes identify links between pelagic prey species and seabirds" @default.
- W2328298996 cites W109690219 @default.
- W2328298996 cites W1412193561 @default.
- W2328298996 cites W1518897246 @default.
- W2328298996 cites W1645161410 @default.
- W2328298996 cites W1863440143 @default.
- W2328298996 cites W1968036698 @default.
- W2328298996 cites W1968790256 @default.
- W2328298996 cites W1972405261 @default.
- W2328298996 cites W1976043619 @default.
- W2328298996 cites W1984132513 @default.
- W2328298996 cites W1993417954 @default.
- W2328298996 cites W1996467865 @default.
- W2328298996 cites W1996679821 @default.
- W2328298996 cites W1998792830 @default.
- W2328298996 cites W1999497460 @default.
- W2328298996 cites W2003940174 @default.
- W2328298996 cites W2004068586 @default.
- W2328298996 cites W2006661325 @default.
- W2328298996 cites W2009639835 @default.
- W2328298996 cites W2010208322 @default.
- W2328298996 cites W2012226190 @default.
- W2328298996 cites W2015130921 @default.
- W2328298996 cites W2020311666 @default.
- W2328298996 cites W2021177592 @default.
- W2328298996 cites W2025266725 @default.
- W2328298996 cites W2028669920 @default.
- W2328298996 cites W2029717754 @default.
- W2328298996 cites W2031159396 @default.
- W2328298996 cites W2031752682 @default.
- W2328298996 cites W2035297572 @default.
- W2328298996 cites W2037455145 @default.
- W2328298996 cites W2039256099 @default.
- W2328298996 cites W2041901492 @default.
- W2328298996 cites W2043389670 @default.
- W2328298996 cites W2044206519 @default.
- W2328298996 cites W2045575350 @default.
- W2328298996 cites W2046514639 @default.
- W2328298996 cites W2046515122 @default.
- W2328298996 cites W2047873531 @default.
- W2328298996 cites W2058251754 @default.
- W2328298996 cites W2064807990 @default.
- W2328298996 cites W2066416009 @default.
- W2328298996 cites W2070162096 @default.
- W2328298996 cites W2070577743 @default.
- W2328298996 cites W2072043011 @default.
- W2328298996 cites W2073974779 @default.
- W2328298996 cites W2075824887 @default.
- W2328298996 cites W2077539259 @default.
- W2328298996 cites W2080554479 @default.
- W2328298996 cites W2081651987 @default.
- W2328298996 cites W2084779007 @default.
- W2328298996 cites W2089866786 @default.
- W2328298996 cites W2091308143 @default.
- W2328298996 cites W2098514495 @default.
- W2328298996 cites W2103154420 @default.
- W2328298996 cites W2103762169 @default.
- W2328298996 cites W2104316647 @default.
- W2328298996 cites W2110704831 @default.
- W2328298996 cites W2115656039 @default.
- W2328298996 cites W2119292642 @default.
- W2328298996 cites W2119864364 @default.
- W2328298996 cites W2119913952 @default.
- W2328298996 cites W2122403693 @default.
- W2328298996 cites W2127003042 @default.
- W2328298996 cites W2129298839 @default.
- W2328298996 cites W2144597580 @default.
- W2328298996 cites W2144915079 @default.
- W2328298996 cites W2147480624 @default.
- W2328298996 cites W2149914006 @default.
- W2328298996 cites W2158549113 @default.
- W2328298996 cites W2160596943 @default.
- W2328298996 cites W2166237104 @default.
- W2328298996 cites W2171769937 @default.
- W2328298996 cites W2181249370 @default.
- W2328298996 cites W2371541338 @default.
- W2328298996 cites W2463802608 @default.
- W2328298996 cites W4229591924 @default.
- W2328298996 cites W4234805861 @default.
- W2328298996 doi "https://doi.org/10.3354/meps10176" @default.
- W2328298996 hasPublicationYear "2013" @default.
- W2328298996 type Work @default.
- W2328298996 sameAs 2328298996 @default.
- W2328298996 citedByCount "30" @default.
- W2328298996 countsByYear W23282989962013 @default.
- W2328298996 countsByYear W23282989962014 @default.
- W2328298996 countsByYear W23282989962015 @default.
- W2328298996 countsByYear W23282989962016 @default.
- W2328298996 countsByYear W23282989962017 @default.
- W2328298996 countsByYear W23282989962018 @default.
- W2328298996 countsByYear W23282989962019 @default.