Matches in SemOpenAlex for { <https://semopenalex.org/work/W2328335709> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2328335709 endingPage "1257" @default.
- W2328335709 startingPage "1245" @default.
- W2328335709 abstract "Utility mining is a new development of data mining technology. Among utility mining problems, utility mining with the itemset share framework is a hard one as no anti-monotonicity property holds with the interestingness measure. Prior works on this problem all employ a two-phase, candidate generation approach with one exception that is however inefficient and not scalable with large databases. The two-phase approach suffers from scalability issue due to the huge number of candidates. This paper proposes a novel algorithm that finds high utility patterns in a single phase without generating candidates. The novelties lie in a high utility pattern growth approach, a lookahead strategy, and a linear data structure. Concretely, our pattern growth approach is to search a reverse set enumeration tree and to prune search space by utility upper bounding. We also look ahead to identify high utility patterns without enumeration by a closure property and a singleton property. Our linear data structure enables us to compute a tight bound for powerful pruning and to directly identify high utility patterns in an efficient and scalable way, which targets the root cause with prior algorithms. Extensive experiments on sparse and dense, synthetic and real world data suggest that our algorithm is up to 1 to 3 orders of magnitude more efficient and is more scalable than the state-of-the-art algorithms." @default.
- W2328335709 created "2016-06-24" @default.
- W2328335709 creator A5012700373 @default.
- W2328335709 creator A5021788449 @default.
- W2328335709 creator A5026906414 @default.
- W2328335709 date "2016-05-01" @default.
- W2328335709 modified "2023-10-10" @default.
- W2328335709 title "Mining High Utility Patterns in One Phase without Generating Candidates" @default.
- W2328335709 cites W1519164029 @default.
- W2328335709 cites W1550084988 @default.
- W2328335709 cites W1575391561 @default.
- W2328335709 cites W1580193024 @default.
- W2328335709 cites W1698489882 @default.
- W2328335709 cites W1779881208 @default.
- W2328335709 cites W1935986945 @default.
- W2328335709 cites W1966220510 @default.
- W2328335709 cites W1968259950 @default.
- W2328335709 cites W1973036367 @default.
- W2328335709 cites W2029237138 @default.
- W2328335709 cites W2041650550 @default.
- W2328335709 cites W2049785083 @default.
- W2328335709 cites W2051085214 @default.
- W2328335709 cites W2053309697 @default.
- W2328335709 cites W2069356553 @default.
- W2328335709 cites W2069737789 @default.
- W2328335709 cites W2076404872 @default.
- W2328335709 cites W2078064242 @default.
- W2328335709 cites W2083825074 @default.
- W2328335709 cites W2094830079 @default.
- W2328335709 cites W2098268836 @default.
- W2328335709 cites W2099398039 @default.
- W2328335709 cites W2099404336 @default.
- W2328335709 cites W2102297485 @default.
- W2328335709 cites W2115274736 @default.
- W2328335709 cites W2128723273 @default.
- W2328335709 cites W2151028259 @default.
- W2328335709 cites W2157169143 @default.
- W2328335709 cites W2161637667 @default.
- W2328335709 cites W2166559705 @default.
- W2328335709 cites W2171612826 @default.
- W2328335709 cites W2172186225 @default.
- W2328335709 cites W4252403066 @default.
- W2328335709 cites W80315153 @default.
- W2328335709 doi "https://doi.org/10.1109/tkde.2015.2510012" @default.
- W2328335709 hasPublicationYear "2016" @default.
- W2328335709 type Work @default.
- W2328335709 sameAs 2328335709 @default.
- W2328335709 citedByCount "99" @default.
- W2328335709 countsByYear W23283357092016 @default.
- W2328335709 countsByYear W23283357092017 @default.
- W2328335709 countsByYear W23283357092018 @default.
- W2328335709 countsByYear W23283357092019 @default.
- W2328335709 countsByYear W23283357092020 @default.
- W2328335709 countsByYear W23283357092021 @default.
- W2328335709 countsByYear W23283357092022 @default.
- W2328335709 countsByYear W23283357092023 @default.
- W2328335709 crossrefType "journal-article" @default.
- W2328335709 hasAuthorship W2328335709A5012700373 @default.
- W2328335709 hasAuthorship W2328335709A5021788449 @default.
- W2328335709 hasAuthorship W2328335709A5026906414 @default.
- W2328335709 hasConcept C124101348 @default.
- W2328335709 hasConcept C178790620 @default.
- W2328335709 hasConcept C185592680 @default.
- W2328335709 hasConcept C41008148 @default.
- W2328335709 hasConcept C44280652 @default.
- W2328335709 hasConceptScore W2328335709C124101348 @default.
- W2328335709 hasConceptScore W2328335709C178790620 @default.
- W2328335709 hasConceptScore W2328335709C185592680 @default.
- W2328335709 hasConceptScore W2328335709C41008148 @default.
- W2328335709 hasConceptScore W2328335709C44280652 @default.
- W2328335709 hasFunder F4320321001 @default.
- W2328335709 hasFunder F4320338464 @default.
- W2328335709 hasIssue "5" @default.
- W2328335709 hasLocation W23283357091 @default.
- W2328335709 hasOpenAccess W2328335709 @default.
- W2328335709 hasPrimaryLocation W23283357091 @default.
- W2328335709 hasRelatedWork W2347219288 @default.
- W2328335709 hasRelatedWork W2348097614 @default.
- W2328335709 hasRelatedWork W2354822586 @default.
- W2328335709 hasRelatedWork W2358841807 @default.
- W2328335709 hasRelatedWork W2366221835 @default.
- W2328335709 hasRelatedWork W2390279801 @default.
- W2328335709 hasRelatedWork W2748952813 @default.
- W2328335709 hasRelatedWork W2899084033 @default.
- W2328335709 hasRelatedWork W2969723784 @default.
- W2328335709 hasRelatedWork W3149424243 @default.
- W2328335709 hasVolume "28" @default.
- W2328335709 isParatext "false" @default.
- W2328335709 isRetracted "false" @default.
- W2328335709 magId "2328335709" @default.
- W2328335709 workType "article" @default.