Matches in SemOpenAlex for { <https://semopenalex.org/work/W2328635558> ?p ?o ?g. }
- W2328635558 endingPage "4031" @default.
- W2328635558 startingPage "4017" @default.
- W2328635558 abstract "ABSTRACT To improve our understanding of the similarities and differences between neutralizing antibodies elicited by simian-human immunodeficiency virus (SHIV)-infected rhesus macaques and human immunodeficiency virus type 1 (HIV-1)-infected humans, we examined the plasma of 13 viremic macaques infected with SHIV SF162P3N and 85 HIV-1-infected humans with known times of infection. We identified 5 macaques (38%) from 1 to 2 years postinfection (p.i.) with broadly neutralizing antibodies (bnAbs) against tier 2 HIV-1. In comparison, only 2 out of 42 (5%) human plasma samples collected in a similar time frame of 1 to 3 years p.i. exhibited comparable neutralizing breadths and potencies, with the number increasing to 7 out of 21 (30%) after 3 years p.i. Plasma mapping with monomeric gp120 identified only 2 out of 9 humans and 2 out of 4 macaques that contained gp120-reactive neutralizing antibodies, indicating distinct specificities in these plasma samples, with most of them recognizing the envelope trimer (including gp41) rather than the gp120 monomer. Indeed, a total of 20 gp120-directed monoclonal antibodies (MAbs) isolated from a human subject (AD358) and a Chinese rhesus macaque (GB40) displayed no or limited neutralizing activity against tier 2 strains. These isolated MAbs, mapped to the CD4-binding site, the V3 loop, the inner domain, and the C5 region of gp120, revealed genetic similarity between the human and macaque immunoglobulin genes used to encode some V3-directed MAbs. These results also support the use of envelope trimer probes for efficient isolation of HIV-1 bnAbs. IMPORTANCE HIV-1 vaccine research can benefit from understanding the development of broadly neutralizing antibodies (bnAbs) in rhesus macaques, commonly used to assess vaccine immunogenicity and efficacy. Here, we examined 85 HIV-1-infected humans and 13 SHIV SF162P3N -infected macaques for bnAbs and found that, similar to HIV-1-infected humans, bnAbs in SHIV-infected macaques are also rare, but their development might have been faster in some of the studied macaques. Plasma mapping with monomeric gp120 indicated that most bnAbs bind to the envelope trimer rather than the gp120 monomer. In support of this, none of the isolated gp120-reactive monoclonal antibodies (MAbs) displayed the neutralization breadth observed in the corresponding plasma. However, the MAb sequences revealed similarity between human and macaque genes used to encode some V3-directed MAbs. Our study sheds light on the timing and development of bnAbs in SHIV-infected macaques in comparison to HIV-1-infected humans and highlights the use of envelope trimer probes for efficient recovery of bnAbs." @default.
- W2328635558 created "2016-06-24" @default.
- W2328635558 creator A5024920180 @default.
- W2328635558 creator A5047077004 @default.
- W2328635558 creator A5051838716 @default.
- W2328635558 creator A5056076181 @default.
- W2328635558 creator A5089026508 @default.
- W2328635558 date "2016-04-15" @default.
- W2328635558 modified "2023-09-25" @default.
- W2328635558 title "Development of Broadly Neutralizing Antibodies and Their Mapping by Monomeric gp120 in Human Immunodeficiency Virus Type 1-Infected Humans and Simian-Human Immunodeficiency Virus SHIV <sub>SF162P3N</sub> -Infected Macaques" @default.
- W2328635558 cites W1505528250 @default.
- W2328635558 cites W1533750546 @default.
- W2328635558 cites W1937669064 @default.
- W2328635558 cites W1963704583 @default.
- W2328635558 cites W1974273518 @default.
- W2328635558 cites W1977488202 @default.
- W2328635558 cites W1978398372 @default.
- W2328635558 cites W1991805858 @default.
- W2328635558 cites W1997677784 @default.
- W2328635558 cites W1998383398 @default.
- W2328635558 cites W2001751895 @default.
- W2328635558 cites W2002574877 @default.
- W2328635558 cites W2003380951 @default.
- W2328635558 cites W2006483986 @default.
- W2328635558 cites W2009151161 @default.
- W2328635558 cites W2010959676 @default.
- W2328635558 cites W2011136801 @default.
- W2328635558 cites W2019405644 @default.
- W2328635558 cites W2025005245 @default.
- W2328635558 cites W2029023023 @default.
- W2328635558 cites W2029135056 @default.
- W2328635558 cites W2029525307 @default.
- W2328635558 cites W2040235378 @default.
- W2328635558 cites W2042411186 @default.
- W2328635558 cites W2049921779 @default.
- W2328635558 cites W2059583074 @default.
- W2328635558 cites W2083002978 @default.
- W2328635558 cites W2084341498 @default.
- W2328635558 cites W2093961711 @default.
- W2328635558 cites W2095632120 @default.
- W2328635558 cites W2097386513 @default.
- W2328635558 cites W2103712192 @default.
- W2328635558 cites W2103940273 @default.
- W2328635558 cites W2105903892 @default.
- W2328635558 cites W2107850607 @default.
- W2328635558 cites W2108096886 @default.
- W2328635558 cites W2110499527 @default.
- W2328635558 cites W2110714233 @default.
- W2328635558 cites W2112194489 @default.
- W2328635558 cites W2112760617 @default.
- W2328635558 cites W2113236498 @default.
- W2328635558 cites W2116849917 @default.
- W2328635558 cites W2116983636 @default.
- W2328635558 cites W2118274231 @default.
- W2328635558 cites W2121096721 @default.
- W2328635558 cites W2122210861 @default.
- W2328635558 cites W2122909018 @default.
- W2328635558 cites W2124605791 @default.
- W2328635558 cites W2128579789 @default.
- W2328635558 cites W2133750999 @default.
- W2328635558 cites W2135151522 @default.
- W2328635558 cites W2137603774 @default.
- W2328635558 cites W2144015945 @default.
- W2328635558 cites W2146478787 @default.
- W2328635558 cites W2146704167 @default.
- W2328635558 cites W2148245437 @default.
- W2328635558 cites W2150999673 @default.
- W2328635558 cites W2152440860 @default.
- W2328635558 cites W2156381249 @default.
- W2328635558 cites W2156731171 @default.
- W2328635558 cites W2162604485 @default.
- W2328635558 cites W2164250779 @default.
- W2328635558 cites W2164701456 @default.
- W2328635558 cites W2166730438 @default.
- W2328635558 cites W2168912344 @default.
- W2328635558 cites W4235232179 @default.
- W2328635558 doi "https://doi.org/10.1128/jvi.02898-15" @default.
- W2328635558 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4810546" @default.
- W2328635558 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26842476" @default.
- W2328635558 hasPublicationYear "2016" @default.
- W2328635558 type Work @default.
- W2328635558 sameAs 2328635558 @default.
- W2328635558 citedByCount "22" @default.
- W2328635558 countsByYear W23286355582016 @default.
- W2328635558 countsByYear W23286355582017 @default.
- W2328635558 countsByYear W23286355582018 @default.
- W2328635558 countsByYear W23286355582019 @default.
- W2328635558 countsByYear W23286355582020 @default.
- W2328635558 countsByYear W23286355582021 @default.
- W2328635558 countsByYear W23286355582023 @default.
- W2328635558 crossrefType "journal-article" @default.
- W2328635558 hasAuthorship W2328635558A5024920180 @default.
- W2328635558 hasAuthorship W2328635558A5047077004 @default.
- W2328635558 hasAuthorship W2328635558A5051838716 @default.
- W2328635558 hasAuthorship W2328635558A5056076181 @default.
- W2328635558 hasAuthorship W2328635558A5089026508 @default.
- W2328635558 hasBestOaLocation W23286355581 @default.
- W2328635558 hasConcept C151730666 @default.