Matches in SemOpenAlex for { <https://semopenalex.org/work/W2328751486> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2328751486 abstract "A hierarchical multi-disciplinary optimization (MDO) approach for Process and Energy Systems (PES) is outlined and its efficiency is discussed. The mathematical models of PES consist of systems of equations (differential, PDE, and algebraic) that represent the relevant physics. The models could be lumped or distributed, dynamic or steady state. The equations typically link together state variables with parameters such as performance parameters (e.g., controls), geometry parameters (sizes), and operating conditions e.g., loads or environmental parameters. The PES has to be optimized for performance and cost/weight/volume at different operating conditions (points), by varying the performance and geometry parameters. In general, the full system may be too large to be optimized by an All-at-Once approach, mainly due to simulation difficulties, e.g., the system simulation often fails if initial values and parameter ranges are not set properly. In contrast, the methodology proposed here is very robust, even for large scale systems. The multi-disciplinary optimization approach presented in this paper combines features from major MDO techniques in use. It has four sequential stages: optimization of individual subsystems; coupling of optimizations of subsystems; system level optimization; and multi-point optimization. In the first stage, individual subsystems are analyzed, the essential optimization parameters found and the feasible regions delimited. These are necessary for the second stage, when subsystem optimizations are coupled sequentially and subsystems are optimized for performance and geometry parameters. Central optimization difficulties have to be treated here, for example, those that arise from the subsystem interactions via inputs/outputs or from the competition between the objectives of the different subsystems, e.g., the optimal solution of one subsystem may lead to infeasible solutions for other subsystem. When the second stage optimization stabilizes in a feasible region, it is used in the third stage, a hierarchical optimization, when the geometry is optimized at system level while the performance is optimized at subsystem level. The system level optimization starts with a global optimization, as for example one performed by a global search or genetic type algorithm. For each fixed set of geometry parameters, the subsystems are optimized locally for performance parameters. The best system level solutions of the global optimization are used for a system level local optimization both for geometry and performance parameters. Finally, in the fourth stage, a multi-point optimization for various operating conditions of the full system is performed using the solutions obtained from the third stage optimization as starting points. The four stage approach will produce useful (optimal) results at all stages. Additionally, it provides significant inputs at each stage for effective execution of the next (higher level) stage, and it ensures multi-level convergence of the full problem, which is one of the major shortcomings of many conventional hierarchical approaches. The four stage MDO approach was implemented for the global optimization for weight/volume/performance of a relatively large industrial processing system incorporating more than 10000 variables coupled in partial differential, algebraic equations (PDAE). Successful optimization runs illustrated the capability of the approach to overcome major computational difficulties that lead to failures of many other approaches. The difficulties that had to be solved include: relatively long solver time, solver difficulties as initialization and convergence, vastness of the optimization domain, nonlinearity, feasibility at component and system level, large percent of solver crashes due to un-physical parameter combinations, and major MDO specific difficulties related to subsystem coupling and decoupling." @default.
- W2328751486 created "2016-06-24" @default.
- W2328751486 creator A5021469154 @default.
- W2328751486 creator A5032389604 @default.
- W2328751486 creator A5038080310 @default.
- W2328751486 creator A5047243571 @default.
- W2328751486 creator A5051631636 @default.
- W2328751486 creator A5089600026 @default.
- W2328751486 date "2002-09-04" @default.
- W2328751486 modified "2023-10-05" @default.
- W2328751486 title "A Multi-Disciplinary Optimization Approach for Process and Energy Systems" @default.
- W2328751486 cites W1510052597 @default.
- W2328751486 cites W1518078339 @default.
- W2328751486 cites W1983810682 @default.
- W2328751486 cites W1985412770 @default.
- W2328751486 cites W2033247041 @default.
- W2328751486 cites W2043530063 @default.
- W2328751486 cites W2505968561 @default.
- W2328751486 doi "https://doi.org/10.2514/6.2002-5467" @default.
- W2328751486 hasPublicationYear "2002" @default.
- W2328751486 type Work @default.
- W2328751486 sameAs 2328751486 @default.
- W2328751486 citedByCount "2" @default.
- W2328751486 countsByYear W23287514862013 @default.
- W2328751486 countsByYear W23287514862014 @default.
- W2328751486 crossrefType "proceedings-article" @default.
- W2328751486 hasAuthorship W2328751486A5021469154 @default.
- W2328751486 hasAuthorship W2328751486A5032389604 @default.
- W2328751486 hasAuthorship W2328751486A5038080310 @default.
- W2328751486 hasAuthorship W2328751486A5047243571 @default.
- W2328751486 hasAuthorship W2328751486A5051631636 @default.
- W2328751486 hasAuthorship W2328751486A5089600026 @default.
- W2328751486 hasConcept C111919701 @default.
- W2328751486 hasConcept C126255220 @default.
- W2328751486 hasConcept C127413603 @default.
- W2328751486 hasConcept C131584629 @default.
- W2328751486 hasConcept C137836250 @default.
- W2328751486 hasConcept C154945302 @default.
- W2328751486 hasConcept C177264268 @default.
- W2328751486 hasConcept C199360897 @default.
- W2328751486 hasConcept C2775924081 @default.
- W2328751486 hasConcept C33923547 @default.
- W2328751486 hasConcept C41008148 @default.
- W2328751486 hasConcept C47446073 @default.
- W2328751486 hasConcept C78519656 @default.
- W2328751486 hasConcept C98045186 @default.
- W2328751486 hasConceptScore W2328751486C111919701 @default.
- W2328751486 hasConceptScore W2328751486C126255220 @default.
- W2328751486 hasConceptScore W2328751486C127413603 @default.
- W2328751486 hasConceptScore W2328751486C131584629 @default.
- W2328751486 hasConceptScore W2328751486C137836250 @default.
- W2328751486 hasConceptScore W2328751486C154945302 @default.
- W2328751486 hasConceptScore W2328751486C177264268 @default.
- W2328751486 hasConceptScore W2328751486C199360897 @default.
- W2328751486 hasConceptScore W2328751486C2775924081 @default.
- W2328751486 hasConceptScore W2328751486C33923547 @default.
- W2328751486 hasConceptScore W2328751486C41008148 @default.
- W2328751486 hasConceptScore W2328751486C47446073 @default.
- W2328751486 hasConceptScore W2328751486C78519656 @default.
- W2328751486 hasConceptScore W2328751486C98045186 @default.
- W2328751486 hasLocation W23287514861 @default.
- W2328751486 hasOpenAccess W2328751486 @default.
- W2328751486 hasPrimaryLocation W23287514861 @default.
- W2328751486 hasRelatedWork W1507672683 @default.
- W2328751486 hasRelatedWork W1545110349 @default.
- W2328751486 hasRelatedWork W1981206170 @default.
- W2328751486 hasRelatedWork W1988407552 @default.
- W2328751486 hasRelatedWork W2053041866 @default.
- W2328751486 hasRelatedWork W2063446348 @default.
- W2328751486 hasRelatedWork W2070941656 @default.
- W2328751486 hasRelatedWork W2122588193 @default.
- W2328751486 hasRelatedWork W2316780054 @default.
- W2328751486 hasRelatedWork W2319553853 @default.
- W2328751486 hasRelatedWork W2322397856 @default.
- W2328751486 hasRelatedWork W2327755728 @default.
- W2328751486 hasRelatedWork W2333191193 @default.
- W2328751486 hasRelatedWork W2617514602 @default.
- W2328751486 hasRelatedWork W2772799812 @default.
- W2328751486 hasRelatedWork W2904543198 @default.
- W2328751486 hasRelatedWork W3094218301 @default.
- W2328751486 hasRelatedWork W3179256674 @default.
- W2328751486 hasRelatedWork W3181782036 @default.
- W2328751486 hasRelatedWork W2053240518 @default.
- W2328751486 isParatext "false" @default.
- W2328751486 isRetracted "false" @default.
- W2328751486 magId "2328751486" @default.
- W2328751486 workType "article" @default.