Matches in SemOpenAlex for { <https://semopenalex.org/work/W2328768549> ?p ?o ?g. }
- W2328768549 endingPage "876" @default.
- W2328768549 startingPage "868" @default.
- W2328768549 abstract "Ultrafast electron transfer (ET) processes are important primary steps in natural and artificial photosynthesis, as well as in molecular electronic/photonic devices. In biological systems, ET often occurs surprisingly fast over long distances of several tens of angströms. Laser-pulse irradiation is conveniently used to generate strongly oxidizing (or reducing) excited states whose reactions are then studied by time-resolved spectroscopic techniques. While photoluminescence decay and UV-vis absorption supply precise kinetics data, time-resolved infrared absorption (TRIR) and Raman-based spectroscopies have the advantage of providing additional structural information and monitoring vibrational energy flows and dissipation, as well as medium relaxation, that accompany ultrafast ET. We will discuss three cases of photoinduced ET involving the Re(I)(CO)3(N,N) moiety (N,N = polypyridine) that occur much faster than would be expected from ET theories. [Re(4-N-methylpyridinium-pyridine)(CO)3(N,N)](2+) represents a case of excited-state picosecond ET between two different ligands that remains ultrafast even in slow-relaxing solvents, beating the adiabatic limit. This is caused by vibrational/solvational excitation of the precursor state and participation of high-frequency quantum modes in barrier crossing. The case of Re-tryptophan assemblies demonstrates that excited-state Trp → *Re(II) ET is accelerated from nanoseconds to picoseconds when the Re(I)(CO)3(N,N) chromophore is appended to a protein, close to a tryptophan residue. TRIR in combination with DFT calculations and structural studies reveals an interaction between the N,N ligand and the tryptophan indole. It results in partial electronic delocalization in the precursor excited state and likely contributes to the ultrafast ET rate. Long-lived vibrational/solvational excitation of the protein Re(I)(CO)3(N,N)···Trp moiety, documented by dynamic IR band shifts, could be another accelerating factor. The last discussed process, back-ET in a porphyrin-Re(I)(CO)3(N,N) dyad, demonstrates that formation of a hot product accelerates highly exergonic ET in the Marcus inverted region. Overall, it follows that ET can be accelerated by enhancing the electronic interaction and by vibrational excitation of the reacting system and its medium, stressing the importance of quantum nuclear dynamics in ET reactivity. These effects are experimentally accessible by time-resolved vibrational spectroscopies (IR, Raman) in combination with quantum chemical calculations. It is suggested that structural dynamics play different mechanistic roles in light-triggered ET involving electronically excited donors or acceptors than in ground-state processes. While TRIR spectroscopy is well suitable to elucidate ET processes on a molecular-level, transient 2D-IR techniques combining optical and two IR (or terahertz) laser pulses present future opportunities for investigating, driving, and controlling ET." @default.
- W2328768549 created "2016-06-24" @default.
- W2328768549 creator A5014721729 @default.
- W2328768549 creator A5033251610 @default.
- W2328768549 creator A5059647078 @default.
- W2328768549 creator A5062149527 @default.
- W2328768549 date "2015-02-20" @default.
- W2328768549 modified "2023-10-10" @default.
- W2328768549 title "Electron-Transfer Acceleration Investigated by Time Resolved Infrared Spectroscopy" @default.
- W2328768549 cites W1965810021 @default.
- W2328768549 cites W1966220186 @default.
- W2328768549 cites W1971124758 @default.
- W2328768549 cites W1974421936 @default.
- W2328768549 cites W1978568638 @default.
- W2328768549 cites W1985889445 @default.
- W2328768549 cites W1989834263 @default.
- W2328768549 cites W1996597449 @default.
- W2328768549 cites W1997311574 @default.
- W2328768549 cites W1998711329 @default.
- W2328768549 cites W1999494084 @default.
- W2328768549 cites W2012787333 @default.
- W2328768549 cites W2013875313 @default.
- W2328768549 cites W2019685877 @default.
- W2328768549 cites W2026968671 @default.
- W2328768549 cites W2027922366 @default.
- W2328768549 cites W2036039403 @default.
- W2328768549 cites W2044990980 @default.
- W2328768549 cites W2045732159 @default.
- W2328768549 cites W2053295146 @default.
- W2328768549 cites W2054947925 @default.
- W2328768549 cites W2055664999 @default.
- W2328768549 cites W2065330526 @default.
- W2328768549 cites W2065337435 @default.
- W2328768549 cites W2066991715 @default.
- W2328768549 cites W2071595256 @default.
- W2328768549 cites W2074845639 @default.
- W2328768549 cites W2076019045 @default.
- W2328768549 cites W2077397210 @default.
- W2328768549 cites W2077613321 @default.
- W2328768549 cites W2086433642 @default.
- W2328768549 cites W2090945139 @default.
- W2328768549 cites W2093810178 @default.
- W2328768549 cites W2094784806 @default.
- W2328768549 cites W2098527861 @default.
- W2328768549 cites W2104166397 @default.
- W2328768549 cites W2105348198 @default.
- W2328768549 cites W2114715156 @default.
- W2328768549 cites W2125198243 @default.
- W2328768549 cites W2130218951 @default.
- W2328768549 cites W2131843829 @default.
- W2328768549 cites W2139953233 @default.
- W2328768549 cites W2144315158 @default.
- W2328768549 cites W2150690219 @default.
- W2328768549 cites W2157689810 @default.
- W2328768549 cites W2315251207 @default.
- W2328768549 cites W2322365418 @default.
- W2328768549 cites W2324832511 @default.
- W2328768549 cites W2334302040 @default.
- W2328768549 doi "https://doi.org/10.1021/ar5004048" @default.
- W2328768549 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25699661" @default.
- W2328768549 hasPublicationYear "2015" @default.
- W2328768549 type Work @default.
- W2328768549 sameAs 2328768549 @default.
- W2328768549 citedByCount "42" @default.
- W2328768549 countsByYear W23287685492015 @default.
- W2328768549 countsByYear W23287685492016 @default.
- W2328768549 countsByYear W23287685492017 @default.
- W2328768549 countsByYear W23287685492018 @default.
- W2328768549 countsByYear W23287685492019 @default.
- W2328768549 countsByYear W23287685492020 @default.
- W2328768549 countsByYear W23287685492021 @default.
- W2328768549 countsByYear W23287685492022 @default.
- W2328768549 crossrefType "journal-article" @default.
- W2328768549 hasAuthorship W2328768549A5014721729 @default.
- W2328768549 hasAuthorship W2328768549A5033251610 @default.
- W2328768549 hasAuthorship W2328768549A5059647078 @default.
- W2328768549 hasAuthorship W2328768549A5062149527 @default.
- W2328768549 hasBestOaLocation W23287685491 @default.
- W2328768549 hasConcept C120665830 @default.
- W2328768549 hasConcept C121332964 @default.
- W2328768549 hasConcept C123669783 @default.
- W2328768549 hasConcept C159467904 @default.
- W2328768549 hasConcept C178790620 @default.
- W2328768549 hasConcept C181500209 @default.
- W2328768549 hasConcept C184779094 @default.
- W2328768549 hasConcept C185592680 @default.
- W2328768549 hasConcept C192468462 @default.
- W2328768549 hasConcept C32891209 @default.
- W2328768549 hasConcept C32909587 @default.
- W2328768549 hasConcept C33062035 @default.
- W2328768549 hasConcept C51141536 @default.
- W2328768549 hasConcept C520434653 @default.
- W2328768549 hasConcept C55005982 @default.
- W2328768549 hasConcept C62520636 @default.
- W2328768549 hasConcept C70050531 @default.
- W2328768549 hasConcept C73978554 @default.
- W2328768549 hasConcept C75473681 @default.
- W2328768549 hasConcept C84662259 @default.