Matches in SemOpenAlex for { <https://semopenalex.org/work/W2328773112> ?p ?o ?g. }
- W2328773112 endingPage "3040" @default.
- W2328773112 startingPage "3033" @default.
- W2328773112 abstract "Realizing Raman enhancement on a flat surface has become increasingly attractive after the discovery of graphene-enhanced Raman scattering (GERS). Two-dimensional (2D) layered materials, exhibiting a flat surface without dangling bonds, were thought to be strong candidates for both fundamental studies of this Raman enhancement effect and its extension to meet practical applications requirements. Here, we study the Raman enhancement effect on graphene, hexagonal boron nitride (h-BN), and molybdenum disulfide (MoS2), by using the copper phthalocyanine (CuPc) molecule as a probe. This molecule can sit on these layered materials in a face-on configuration. However, it is found that the Raman enhancement effect, which is observable on graphene, hBN, and MoS2, has different enhancement factors for the different vibrational modes of CuPc, depending strongly on the surfaces. Higher-frequency phonon modes of CuPc (such as those at 1342, 1452, 1531 cm–1) are enhanced more strongly on graphene than that on h-BN, while the lower frequency phonon modes of CuPc (such as those at 682, 749, 1142, 1185 cm–1) are enhanced more strongly on h-BN than that on graphene. MoS2 demonstrated the weakest Raman enhancement effect as a substrate among these three 2D materials. These differences are attributed to the different enhancement mechanisms related to the different electronic properties and chemical bonds exhibited by the three substrates: (1) graphene is zero-gap semiconductor and has a nonpolar C–C bond, which induces charge transfer (2) h-BN is insulating and has a strong B–N bond, while (3) MoS2 is semiconducting with the sulfur atoms on the surface and has a polar covalent bond (Mo–S) with the polarity in the vertical direction to the surface. Therefore, the different Raman enhancement mechanisms differ for each material: (1) charge transfer may occur for graphene; (2) strong dipole–dipole coupling may occur for h-BN, and (3) both charge transfer and dipole–dipole coupling may occur, although weaker in magnitude, for MoS2. Consequently, this work studied the origin of the Raman enhancement (specifically, chemical enhancement) and identifies h-BN and MoS2 as two different types of 2D materials with potential for use as Raman enhancement substrates." @default.
- W2328773112 created "2016-06-24" @default.
- W2328773112 creator A5000793722 @default.
- W2328773112 creator A5004731063 @default.
- W2328773112 creator A5009501602 @default.
- W2328773112 creator A5027030871 @default.
- W2328773112 creator A5055174519 @default.
- W2328773112 creator A5061232953 @default.
- W2328773112 creator A5072482071 @default.
- W2328773112 creator A5073568638 @default.
- W2328773112 creator A5075825851 @default.
- W2328773112 creator A5083027719 @default.
- W2328773112 date "2014-04-29" @default.
- W2328773112 modified "2023-10-16" @default.
- W2328773112 title "Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS<sub>2</sub>" @default.
- W2328773112 cites W1964335755 @default.
- W2328773112 cites W1965510035 @default.
- W2328773112 cites W1967243264 @default.
- W2328773112 cites W1973837452 @default.
- W2328773112 cites W1985837080 @default.
- W2328773112 cites W1986669188 @default.
- W2328773112 cites W1995697913 @default.
- W2328773112 cites W2001188209 @default.
- W2328773112 cites W2007757998 @default.
- W2328773112 cites W2010980487 @default.
- W2328773112 cites W2014935324 @default.
- W2328773112 cites W2016040517 @default.
- W2328773112 cites W2026681303 @default.
- W2328773112 cites W2032586998 @default.
- W2328773112 cites W2032876585 @default.
- W2328773112 cites W2035780079 @default.
- W2328773112 cites W2037401465 @default.
- W2328773112 cites W2037811931 @default.
- W2328773112 cites W2039039762 @default.
- W2328773112 cites W2047361553 @default.
- W2328773112 cites W2056154927 @default.
- W2328773112 cites W2056630881 @default.
- W2328773112 cites W2057368264 @default.
- W2328773112 cites W2057760858 @default.
- W2328773112 cites W2069690374 @default.
- W2328773112 cites W2070212566 @default.
- W2328773112 cites W2075041559 @default.
- W2328773112 cites W2080511631 @default.
- W2328773112 cites W2085560495 @default.
- W2328773112 cites W2086697334 @default.
- W2328773112 cites W2092044679 @default.
- W2328773112 cites W2093798511 @default.
- W2328773112 cites W2094518192 @default.
- W2328773112 cites W2094555276 @default.
- W2328773112 cites W2104058382 @default.
- W2328773112 cites W2108102346 @default.
- W2328773112 cites W2115318086 @default.
- W2328773112 cites W2115786064 @default.
- W2328773112 cites W2115797520 @default.
- W2328773112 cites W2118300486 @default.
- W2328773112 cites W2118560415 @default.
- W2328773112 cites W2125284466 @default.
- W2328773112 cites W2128950417 @default.
- W2328773112 cites W2145851443 @default.
- W2328773112 cites W2314971145 @default.
- W2328773112 cites W2318675354 @default.
- W2328773112 cites W2321346285 @default.
- W2328773112 cites W2328241741 @default.
- W2328773112 cites W2331169838 @default.
- W2328773112 cites W2333963428 @default.
- W2328773112 cites W2334283009 @default.
- W2328773112 cites W2372714557 @default.
- W2328773112 cites W3102492380 @default.
- W2328773112 cites W3102558059 @default.
- W2328773112 cites W9181081 @default.
- W2328773112 doi "https://doi.org/10.1021/nl404610c" @default.
- W2328773112 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24780008" @default.
- W2328773112 hasPublicationYear "2014" @default.
- W2328773112 type Work @default.
- W2328773112 sameAs 2328773112 @default.
- W2328773112 citedByCount "428" @default.
- W2328773112 countsByYear W23287731122014 @default.
- W2328773112 countsByYear W23287731122015 @default.
- W2328773112 countsByYear W23287731122016 @default.
- W2328773112 countsByYear W23287731122017 @default.
- W2328773112 countsByYear W23287731122018 @default.
- W2328773112 countsByYear W23287731122019 @default.
- W2328773112 countsByYear W23287731122020 @default.
- W2328773112 countsByYear W23287731122021 @default.
- W2328773112 countsByYear W23287731122022 @default.
- W2328773112 countsByYear W23287731122023 @default.
- W2328773112 crossrefType "journal-article" @default.
- W2328773112 hasAuthorship W2328773112A5000793722 @default.
- W2328773112 hasAuthorship W2328773112A5004731063 @default.
- W2328773112 hasAuthorship W2328773112A5009501602 @default.
- W2328773112 hasAuthorship W2328773112A5027030871 @default.
- W2328773112 hasAuthorship W2328773112A5055174519 @default.
- W2328773112 hasAuthorship W2328773112A5061232953 @default.
- W2328773112 hasAuthorship W2328773112A5072482071 @default.
- W2328773112 hasAuthorship W2328773112A5073568638 @default.
- W2328773112 hasAuthorship W2328773112A5075825851 @default.
- W2328773112 hasAuthorship W2328773112A5083027719 @default.
- W2328773112 hasConcept C108225325 @default.