Matches in SemOpenAlex for { <https://semopenalex.org/work/W2328871316> ?p ?o ?g. }
- W2328871316 endingPage "58" @default.
- W2328871316 startingPage "35" @default.
- W2328871316 abstract "CR Climate Research Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials CR 51:35-58 (2012) - DOI: https://doi.org/10.3354/cr01046 CMIP3 ensemble climate projections over the western tropical Pacific based on model skill Sarah E. Perkins1,2,3,*, Damien B. Irving1,2, Josephine R. Brown2,3, Scott B. Power2,3, Aurel F. Moise2,3, Robert A. Colman2,3, Ian Smith2,3 1Centre for Australian Weather and Climate Research, CSIRO Marine and Atmospheric Research, Aspendale, Victoria 3195, Australia 2Centre for Australian Weather and Climate Research, Bureau of Meteorology, GPO Box 1289, Melbourne, Victoria 3001, Australia 3Present address: ARC Centre of Excellence for Climate System Science, The University of New South Wales, Sydney, NSW 2052 Australia *Email: sarah.perkins@unsw.edu.au ABSTRACT: Climate projections provide important information for risk assessment and adaptation planning. The CMIP3 archive of global climate model (GCM) simulations has been used extensively for such projections over land-based regions, but limited attention has been paid to the western tropical Pacific, where vulnerability is likely to be high. Adaptation policies within the western Pacific currently are based on the heavily summarised information within the IPCC fourth assessment report. This study builds upon the IPCC projections by analysing and presenting projections of change from the CMIP3 GCMs and demonstrating spatial differences in projections across the west Pacific domain. Atmospheric fields considered in this paper include surface air temperature, precipitation, and wind speed and direction for the SRES A2 emission scenario for 2080−2099, where the projected change is relative to 1980−1999. Results for all fields are based on 3 types of multi-model ensembles: the all-model (ALL) ensemble (19 models), the BEST ensemble (15 models) and the WORST ensemble (4 models). The BEST and WORST ensembles are based on model skill in simulating relevant climatic features, drivers and variables, which govern the interannual and annual climate of the study region. The WORST ensemble was found to generally exhibit a statistically significant bias in projections for precipitation, wind speed and wind direction in reference to the ALL ensemble. This bias is always statistically significantly different for surface air temperature. Some biases are still present in the BEST ensemble for all variables in comparison to the ALL ensemble, and uncertainty is not always reduced when the WORST models are eliminated from the ensemble. Overall, we advocate the use of the BEST ensemble when considering domain-wide projections due to the ability of the model members to simulate the current climate across the region. KEY WORDS: CMIP3 climate models · Ensembles · Pacific region · Climate projections Full text in pdf format PreviousNextCite this article as: Perkins SE, Irving DB, Brown JR, Power SB, Moise AF, Colman RA, Smith I (2012) CMIP3 ensemble climate projections over the western tropical Pacific based on model skill. Clim Res 51:35-58. https://doi.org/10.3354/cr01046 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in CR Vol. 51, No. 1. Online publication date: January 24, 2012 Print ISSN: 0936-577X; Online ISSN: 1616-1572 Copyright © 2012 Inter-Research." @default.
- W2328871316 created "2016-06-24" @default.
- W2328871316 creator A5005123216 @default.
- W2328871316 creator A5058341150 @default.
- W2328871316 creator A5068199624 @default.
- W2328871316 creator A5069119961 @default.
- W2328871316 creator A5077900746 @default.
- W2328871316 creator A5086562736 @default.
- W2328871316 creator A5088742026 @default.
- W2328871316 date "2012-01-24" @default.
- W2328871316 modified "2023-10-09" @default.
- W2328871316 title "CMIP3 ensemble climate projections over the western tropical Pacific based on model skill" @default.
- W2328871316 cites W1509521877 @default.
- W2328871316 cites W1565512823 @default.
- W2328871316 cites W1965731662 @default.
- W2328871316 cites W1966610706 @default.
- W2328871316 cites W1970288949 @default.
- W2328871316 cites W1977962914 @default.
- W2328871316 cites W1978428671 @default.
- W2328871316 cites W1979438776 @default.
- W2328871316 cites W1979810891 @default.
- W2328871316 cites W1985479415 @default.
- W2328871316 cites W1988607146 @default.
- W2328871316 cites W1993566552 @default.
- W2328871316 cites W1996478169 @default.
- W2328871316 cites W2000916618 @default.
- W2328871316 cites W2008611031 @default.
- W2328871316 cites W2012200569 @default.
- W2328871316 cites W2017351866 @default.
- W2328871316 cites W2017493773 @default.
- W2328871316 cites W2019097137 @default.
- W2328871316 cites W2019450357 @default.
- W2328871316 cites W2021712055 @default.
- W2328871316 cites W2025529786 @default.
- W2328871316 cites W2029009181 @default.
- W2328871316 cites W2031784019 @default.
- W2328871316 cites W2031967473 @default.
- W2328871316 cites W2032060152 @default.
- W2328871316 cites W2034640254 @default.
- W2328871316 cites W2036418158 @default.
- W2328871316 cites W2039985233 @default.
- W2328871316 cites W2040520892 @default.
- W2328871316 cites W2040615125 @default.
- W2328871316 cites W2042265491 @default.
- W2328871316 cites W2046759075 @default.
- W2328871316 cites W2051313984 @default.
- W2328871316 cites W2061730348 @default.
- W2328871316 cites W2062217294 @default.
- W2328871316 cites W2064730812 @default.
- W2328871316 cites W2064893565 @default.
- W2328871316 cites W2067994891 @default.
- W2328871316 cites W2068242609 @default.
- W2328871316 cites W2069320109 @default.
- W2328871316 cites W2072128221 @default.
- W2328871316 cites W2075532188 @default.
- W2328871316 cites W2078048697 @default.
- W2328871316 cites W2085893612 @default.
- W2328871316 cites W2090029279 @default.
- W2328871316 cites W2096587785 @default.
- W2328871316 cites W2100931101 @default.
- W2328871316 cites W2100956194 @default.
- W2328871316 cites W2134346792 @default.
- W2328871316 cites W2140362063 @default.
- W2328871316 cites W2141604188 @default.
- W2328871316 cites W2148924557 @default.
- W2328871316 cites W2170553462 @default.
- W2328871316 cites W2181393575 @default.
- W2328871316 cites W2317396890 @default.
- W2328871316 cites W2605140704 @default.
- W2328871316 cites W640038586 @default.
- W2328871316 doi "https://doi.org/10.3354/cr01046" @default.
- W2328871316 hasPublicationYear "2012" @default.
- W2328871316 type Work @default.
- W2328871316 sameAs 2328871316 @default.
- W2328871316 citedByCount "18" @default.
- W2328871316 countsByYear W23288713162012 @default.
- W2328871316 countsByYear W23288713162013 @default.
- W2328871316 countsByYear W23288713162014 @default.
- W2328871316 countsByYear W23288713162015 @default.
- W2328871316 countsByYear W23288713162016 @default.
- W2328871316 countsByYear W23288713162017 @default.
- W2328871316 countsByYear W23288713162019 @default.
- W2328871316 countsByYear W23288713162020 @default.
- W2328871316 countsByYear W23288713162022 @default.
- W2328871316 crossrefType "journal-article" @default.
- W2328871316 hasAuthorship W2328871316A5005123216 @default.
- W2328871316 hasAuthorship W2328871316A5058341150 @default.
- W2328871316 hasAuthorship W2328871316A5068199624 @default.
- W2328871316 hasAuthorship W2328871316A5069119961 @default.
- W2328871316 hasAuthorship W2328871316A5077900746 @default.
- W2328871316 hasAuthorship W2328871316A5086562736 @default.
- W2328871316 hasAuthorship W2328871316A5088742026 @default.
- W2328871316 hasBestOaLocation W23288713161 @default.
- W2328871316 hasConcept C107054158 @default.
- W2328871316 hasConcept C111368507 @default.
- W2328871316 hasConcept C127313418 @default.
- W2328871316 hasConcept C132651083 @default.
- W2328871316 hasConcept C153294291 @default.