Matches in SemOpenAlex for { <https://semopenalex.org/work/W2329121153> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2329121153 abstract "This paper presents the results of a study applying the Bayesian inversion approach to electromagnetic induction (EMI) data, for applications such as UXO discrimination. The cases investigated feature prominent impediments to simpler treatment, namely high signal clutter and multiple objects sensed simultaneously. The fundamental feature of Bayesian inversion is rational incorporation of prior information into a stochastic inference algorithm, to reach the most robust posterior probability of the model identity based on measured data. In UXO detection and classification, the model is a set of parameters corresponding to a particular object in a particular disposition. Prior information about the target or setting and the randomness of noise from different sources warrant the application of a Bayesian approach in this particular inverse problem. Broadband EMI responses at different locations, in terms of scattered magnetic field components in-phase and out-of-phase with the transmitted primary field, form the data vector. Undoubtedly, EMI measurements are contaminated with errors in sensor positioning, truncation errors in sensors and computers, metallic clutter items, ambient radio interference, etc. The prior information derives from sampling excavation at a particular site, soil information, historical information on use of a site, archival knowledge on different object types, forward modeling results for a particular type of UXO, and other pertinent information one can collect for a given UXO cleanup project. Compared to deterministic inversion algorithms, Bayesian inversion should be more advantageous for dealing with an inverse or inference problem when data are contaminated by random errors, as long as one can justify characterizing the prior information statistically. Two kinds of problem were solved here using the Bayesian approach: (1) data contaminated with random noise and (2) data for cases in which more than one UXO-sized object is in the sensor's field of view at the same time. For the first case, we applied the inversion algorithms on 100 sets of synthetic data; results were compared with that from simple least squares (SLS) algorithm. Comparison shows that Bayesian approach can give more accurate results, given that we can provide reasonable prior information and statistics on the noise. For the second case, we measured data for two cylinders at different distances from one another, with signals overlapping to one degree or another. Results show that in most cases the signatures of each individual contributing target can be extracted." @default.
- W2329121153 created "2016-06-24" @default.
- W2329121153 creator A5003353953 @default.
- W2329121153 creator A5049793480 @default.
- W2329121153 creator A5056635606 @default.
- W2329121153 creator A5081980809 @default.
- W2329121153 creator A5087917111 @default.
- W2329121153 date "2003-01-01" @default.
- W2329121153 modified "2023-09-23" @default.
- W2329121153 title "Application Of Bayesian Inversion Of Electromagnetic Induction Data For Uxo Discrimination" @default.
- W2329121153 cites W1888589002 @default.
- W2329121153 cites W1975315360 @default.
- W2329121153 cites W1983504899 @default.
- W2329121153 cites W2041989170 @default.
- W2329121153 cites W2053513171 @default.
- W2329121153 cites W2088533643 @default.
- W2329121153 cites W2098085665 @default.
- W2329121153 cites W2115523533 @default.
- W2329121153 cites W2130886969 @default.
- W2329121153 cites W2145449231 @default.
- W2329121153 cites W2151728013 @default.
- W2329121153 cites W2158644892 @default.
- W2329121153 cites W1852716759 @default.
- W2329121153 cites W2049315980 @default.
- W2329121153 doi "https://doi.org/10.3997/2214-4609-pdb.190.uxo09" @default.
- W2329121153 hasPublicationYear "2003" @default.
- W2329121153 type Work @default.
- W2329121153 sameAs 2329121153 @default.
- W2329121153 citedByCount "2" @default.
- W2329121153 crossrefType "proceedings-article" @default.
- W2329121153 hasAuthorship W2329121153A5003353953 @default.
- W2329121153 hasAuthorship W2329121153A5049793480 @default.
- W2329121153 hasAuthorship W2329121153A5056635606 @default.
- W2329121153 hasAuthorship W2329121153A5081980809 @default.
- W2329121153 hasAuthorship W2329121153A5087917111 @default.
- W2329121153 hasConcept C105795698 @default.
- W2329121153 hasConcept C107673813 @default.
- W2329121153 hasConcept C109007969 @default.
- W2329121153 hasConcept C11413529 @default.
- W2329121153 hasConcept C124101348 @default.
- W2329121153 hasConcept C125112378 @default.
- W2329121153 hasConcept C127313418 @default.
- W2329121153 hasConcept C132094186 @default.
- W2329121153 hasConcept C134306372 @default.
- W2329121153 hasConcept C135252773 @default.
- W2329121153 hasConcept C151730666 @default.
- W2329121153 hasConcept C153180895 @default.
- W2329121153 hasConcept C154945302 @default.
- W2329121153 hasConcept C160234255 @default.
- W2329121153 hasConcept C1893757 @default.
- W2329121153 hasConcept C205649164 @default.
- W2329121153 hasConcept C2775977338 @default.
- W2329121153 hasConcept C2776214188 @default.
- W2329121153 hasConcept C33923547 @default.
- W2329121153 hasConcept C41008148 @default.
- W2329121153 hasConcept C554190296 @default.
- W2329121153 hasConcept C62649853 @default.
- W2329121153 hasConcept C76155785 @default.
- W2329121153 hasConceptScore W2329121153C105795698 @default.
- W2329121153 hasConceptScore W2329121153C107673813 @default.
- W2329121153 hasConceptScore W2329121153C109007969 @default.
- W2329121153 hasConceptScore W2329121153C11413529 @default.
- W2329121153 hasConceptScore W2329121153C124101348 @default.
- W2329121153 hasConceptScore W2329121153C125112378 @default.
- W2329121153 hasConceptScore W2329121153C127313418 @default.
- W2329121153 hasConceptScore W2329121153C132094186 @default.
- W2329121153 hasConceptScore W2329121153C134306372 @default.
- W2329121153 hasConceptScore W2329121153C135252773 @default.
- W2329121153 hasConceptScore W2329121153C151730666 @default.
- W2329121153 hasConceptScore W2329121153C153180895 @default.
- W2329121153 hasConceptScore W2329121153C154945302 @default.
- W2329121153 hasConceptScore W2329121153C160234255 @default.
- W2329121153 hasConceptScore W2329121153C1893757 @default.
- W2329121153 hasConceptScore W2329121153C205649164 @default.
- W2329121153 hasConceptScore W2329121153C2775977338 @default.
- W2329121153 hasConceptScore W2329121153C2776214188 @default.
- W2329121153 hasConceptScore W2329121153C33923547 @default.
- W2329121153 hasConceptScore W2329121153C41008148 @default.
- W2329121153 hasConceptScore W2329121153C554190296 @default.
- W2329121153 hasConceptScore W2329121153C62649853 @default.
- W2329121153 hasConceptScore W2329121153C76155785 @default.
- W2329121153 hasLocation W23291211531 @default.
- W2329121153 hasOpenAccess W2329121153 @default.
- W2329121153 hasPrimaryLocation W23291211531 @default.
- W2329121153 hasRelatedWork W1978450727 @default.
- W2329121153 hasRelatedWork W2033914206 @default.
- W2329121153 hasRelatedWork W2046077695 @default.
- W2329121153 hasRelatedWork W2110459882 @default.
- W2329121153 hasRelatedWork W2163831990 @default.
- W2329121153 hasRelatedWork W2378160586 @default.
- W2329121153 hasRelatedWork W2418464274 @default.
- W2329121153 hasRelatedWork W3003836766 @default.
- W2329121153 hasRelatedWork W3107474891 @default.
- W2329121153 hasRelatedWork W3184582087 @default.
- W2329121153 isParatext "false" @default.
- W2329121153 isRetracted "false" @default.
- W2329121153 magId "2329121153" @default.
- W2329121153 workType "article" @default.