Matches in SemOpenAlex for { <https://semopenalex.org/work/W2329122086> ?p ?o ?g. }
- W2329122086 endingPage "8359" @default.
- W2329122086 startingPage "8347" @default.
- W2329122086 abstract "Flurbiprofen (Fp), a nonsteroidal anti-inflammatory drug (NSAID) currently in use for arthritis pain relief and in clinical trials for metastatic prostate cancer, can induce photosensitization and phototoxicity upon exposure to sunlight. The mechanisms responsible for Fp phototoxicity are poorly understood and deserve investigation. In this study, the photodecarboxylation reaction of Fp, which has been assumed to underpin its photoinduced side effects, was explored by femtosecond transient absorption (fs-TA), nanosecond transient absorption (ns-TA), and nanosecond time-resolved resonance Raman (ns-TR3) spectroscopic techniques in pure acetonitrile (MeCN) solvent. Density functional theory (DFT) calculations were also performed to facilitate the assignments of transient species. The resonance Raman and DFT calculation results reveal that the neutral form of Fp was the predominant species present in MeCN. Analysis of the ultraviolet/visible absorption spectrum and results from TD-DFT calculations indicate that the second excited singlet (S2) can be excited by 266 nm light. Due to its intrinsic instability, S2 rapidly underwent internal conversion (IC) to decay to the lowest lying excited singlet (S1), which was observed in the fs-TA spectra at very early delay times. Intriguingly, three distinct pathways for S1 decay seem to coexist. Specifically, other than fluorescence emission back to the ground state and transformation to the lowest triplet state T1 through intersystem crossing (ISC), the homolysis of the carbon α-bond decarboxylation reaction proceeded simultaneously to give rise to two radical species, one being carboxyl and another being the residual, denoted as FpR. The coexistence of the triplet Fp (T1) and FpR species was verified by means of TR3 spectra along with ns-TA spectra. As a consequence of its apparent high reactivity, the FpR intermediate was observed to undergo oxidation under oxygen-saturated conditions to yield another radical species, denoted as FOR, which subsequently underwent intramolecular hydrogen transfer (IHT) and dehydroxylation (DHO) to form a final product, which could react with the carboxyl from the decarboxylation reaction to generate a minor final product. TD-DFT and transient state (TS) calculations for predicting the absorption bands and activation energies of the transient species produced in the photodecarboxylation reaction have provided valuable mechanistic insights for the assignment of the intermediate species observed in the time-resolved spectroscopy experiments reported here. The results of the time-resolved spectroscopy experiments and DFT calculations were used to elucidate the reaction mechanisms and intermediates involved in the photochemistry of Fp." @default.
- W2329122086 created "2016-06-24" @default.
- W2329122086 creator A5004415040 @default.
- W2329122086 creator A5031503063 @default.
- W2329122086 creator A5068880113 @default.
- W2329122086 creator A5082765316 @default.
- W2329122086 date "2013-07-02" @default.
- W2329122086 modified "2023-10-03" @default.
- W2329122086 title "Time-Resolved Spectroscopic Characterization of a Novel Photodecarboxylation Reaction Mediated by Homolysis of a Carbon α-Bond in Flurbiprofen" @default.
- W2329122086 cites W1959035739 @default.
- W2329122086 cites W1964413310 @default.
- W2329122086 cites W1966217622 @default.
- W2329122086 cites W1966340998 @default.
- W2329122086 cites W1966429497 @default.
- W2329122086 cites W1969481342 @default.
- W2329122086 cites W1971425636 @default.
- W2329122086 cites W1972295548 @default.
- W2329122086 cites W1972888756 @default.
- W2329122086 cites W1975468393 @default.
- W2329122086 cites W1985785964 @default.
- W2329122086 cites W1992207139 @default.
- W2329122086 cites W1993445029 @default.
- W2329122086 cites W1994548008 @default.
- W2329122086 cites W1995042715 @default.
- W2329122086 cites W1995701939 @default.
- W2329122086 cites W1996424815 @default.
- W2329122086 cites W1997151511 @default.
- W2329122086 cites W1999602233 @default.
- W2329122086 cites W2000512320 @default.
- W2329122086 cites W2011877415 @default.
- W2329122086 cites W2012873284 @default.
- W2329122086 cites W2014334485 @default.
- W2329122086 cites W2016736441 @default.
- W2329122086 cites W2022846439 @default.
- W2329122086 cites W2023271753 @default.
- W2329122086 cites W2024009660 @default.
- W2329122086 cites W2030943268 @default.
- W2329122086 cites W2031268164 @default.
- W2329122086 cites W2034254472 @default.
- W2329122086 cites W2038083805 @default.
- W2329122086 cites W2044961513 @default.
- W2329122086 cites W2045765337 @default.
- W2329122086 cites W2049002895 @default.
- W2329122086 cites W2052081838 @default.
- W2329122086 cites W2056284762 @default.
- W2329122086 cites W2056768042 @default.
- W2329122086 cites W2058398316 @default.
- W2329122086 cites W2073026951 @default.
- W2329122086 cites W2075460000 @default.
- W2329122086 cites W2076246766 @default.
- W2329122086 cites W2076913495 @default.
- W2329122086 cites W2081876025 @default.
- W2329122086 cites W2083075025 @default.
- W2329122086 cites W2086012741 @default.
- W2329122086 cites W2086268888 @default.
- W2329122086 cites W2086942541 @default.
- W2329122086 cites W2102523252 @default.
- W2329122086 cites W2102993121 @default.
- W2329122086 cites W2106824077 @default.
- W2329122086 cites W2108476236 @default.
- W2329122086 cites W2116314481 @default.
- W2329122086 cites W2129369143 @default.
- W2329122086 cites W2133524519 @default.
- W2329122086 cites W2136830304 @default.
- W2329122086 cites W2143303524 @default.
- W2329122086 cites W2143981217 @default.
- W2329122086 cites W2150600899 @default.
- W2329122086 cites W2321200773 @default.
- W2329122086 cites W2327979481 @default.
- W2329122086 cites W2411734049 @default.
- W2329122086 doi "https://doi.org/10.1021/jp403053f" @default.
- W2329122086 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23750456" @default.
- W2329122086 hasPublicationYear "2013" @default.
- W2329122086 type Work @default.
- W2329122086 sameAs 2329122086 @default.
- W2329122086 citedByCount "7" @default.
- W2329122086 countsByYear W23291220862014 @default.
- W2329122086 countsByYear W23291220862015 @default.
- W2329122086 countsByYear W23291220862016 @default.
- W2329122086 countsByYear W23291220862017 @default.
- W2329122086 countsByYear W23291220862020 @default.
- W2329122086 countsByYear W23291220862023 @default.
- W2329122086 crossrefType "journal-article" @default.
- W2329122086 hasAuthorship W2329122086A5004415040 @default.
- W2329122086 hasAuthorship W2329122086A5031503063 @default.
- W2329122086 hasAuthorship W2329122086A5068880113 @default.
- W2329122086 hasAuthorship W2329122086A5082765316 @default.
- W2329122086 hasConcept C121332964 @default.
- W2329122086 hasConcept C139066938 @default.
- W2329122086 hasConcept C147597530 @default.
- W2329122086 hasConcept C152365726 @default.
- W2329122086 hasConcept C175689099 @default.
- W2329122086 hasConcept C178790620 @default.
- W2329122086 hasConcept C181500209 @default.
- W2329122086 hasConcept C184779094 @default.
- W2329122086 hasConcept C185592680 @default.
- W2329122086 hasConcept C32891209 @default.
- W2329122086 hasConcept C33062035 @default.