Matches in SemOpenAlex for { <https://semopenalex.org/work/W2329326109> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W2329326109 abstract "Abstract In early stages of reservoir depletion, it is often a challenging task to accurately determine reservoir properties that are representative of the actual field. Due to different scales of data obtained from various sources like seismic data, well logs, cores, and production data, there is a lot of uncertainty in solving the inverse problem of estimating formation rock and fluid properties from the field data. Hard-computing protocols like reservoir simulation are time and labor intensive. The objective of the current study is to develop a reservoir characterization tool using a novel approach of correlating seismic attributes with well logs and production data using artificial intelligence approach. The tool will enable construction of spatial oil maps at different times revealing sweet spots and aid in optimized field development planning. A workflow is developed for devising a comprehensive reservoir characterization tool based on artificial expert systems. A case study of an offshore deep-water asset is used in demonstrating the tenets of the workflow. The reservoir under consideration is highly heterogeneous in terms of property distribution and is believed to be highly channelized. The ANN based tool assists in identifying sweet spots by predicting optimal well location/completion parameters and production profiles. The multilayer feedforward back-propagation based neural network tool developed is able to capture the correlations that exist amongst seismic data, well logs, completion data, and production data. Well logs are correlated to seismic attributes and geometric location of wells with an average testing (blind test) error of less than 20%. Having correlated seismic data with well logs, synthetic well logs are generated for the entire area of seismic coverage. Synthetic well logs combined with seismic data are able to correlate well with the production within 21% error. The tool developed enables users to predict entire well log suites for even a directional well of user defined configuration through a graphic user interface in a short period of time (typically less than a minute). This methodology uses a unique way of computing seismic attributes following a horizontal well path and correlating them with the suite of well logs. Incorporation of interference effect from neighboring producers and injectors, schedule of production and functional links based on geographic location has made the production performance module robust and reliable. The workflow enables generation of oil production forecast maps through production performance network. NPV (net present value) calculations integrated with production forecasts is used in identifying the potential infill well locations. The results discussed in the paper showcase the robust nature of the methodology." @default.
- W2329326109 created "2016-06-24" @default.
- W2329326109 creator A5035065122 @default.
- W2329326109 creator A5043871354 @default.
- W2329326109 creator A5053308216 @default.
- W2329326109 creator A5067892547 @default.
- W2329326109 date "2015-09-28" @default.
- W2329326109 modified "2023-10-18" @default.
- W2329326109 title "Structuring an Integrative Approach for Field Development Planning Using Artificial Intelligence and its Application to an Offshore Oilfield" @default.
- W2329326109 cites W1986517446 @default.
- W2329326109 cites W1998442441 @default.
- W2329326109 cites W2021864951 @default.
- W2329326109 cites W2027122172 @default.
- W2329326109 cites W2036297892 @default.
- W2329326109 cites W2146453818 @default.
- W2329326109 doi "https://doi.org/10.2118/174871-ms" @default.
- W2329326109 hasPublicationYear "2015" @default.
- W2329326109 type Work @default.
- W2329326109 sameAs 2329326109 @default.
- W2329326109 citedByCount "9" @default.
- W2329326109 countsByYear W23293261092016 @default.
- W2329326109 countsByYear W23293261092017 @default.
- W2329326109 countsByYear W23293261092018 @default.
- W2329326109 countsByYear W23293261092019 @default.
- W2329326109 countsByYear W23293261092020 @default.
- W2329326109 countsByYear W23293261092023 @default.
- W2329326109 crossrefType "proceedings-article" @default.
- W2329326109 hasAuthorship W2329326109A5035065122 @default.
- W2329326109 hasAuthorship W2329326109A5043871354 @default.
- W2329326109 hasAuthorship W2329326109A5053308216 @default.
- W2329326109 hasAuthorship W2329326109A5067892547 @default.
- W2329326109 hasConcept C124101348 @default.
- W2329326109 hasConcept C127313418 @default.
- W2329326109 hasConcept C14641988 @default.
- W2329326109 hasConcept C154945302 @default.
- W2329326109 hasConcept C162284963 @default.
- W2329326109 hasConcept C177212765 @default.
- W2329326109 hasConcept C187320778 @default.
- W2329326109 hasConcept C202444582 @default.
- W2329326109 hasConcept C33923547 @default.
- W2329326109 hasConcept C41008148 @default.
- W2329326109 hasConcept C50644808 @default.
- W2329326109 hasConcept C77088390 @default.
- W2329326109 hasConcept C78762247 @default.
- W2329326109 hasConcept C9652623 @default.
- W2329326109 hasConceptScore W2329326109C124101348 @default.
- W2329326109 hasConceptScore W2329326109C127313418 @default.
- W2329326109 hasConceptScore W2329326109C14641988 @default.
- W2329326109 hasConceptScore W2329326109C154945302 @default.
- W2329326109 hasConceptScore W2329326109C162284963 @default.
- W2329326109 hasConceptScore W2329326109C177212765 @default.
- W2329326109 hasConceptScore W2329326109C187320778 @default.
- W2329326109 hasConceptScore W2329326109C202444582 @default.
- W2329326109 hasConceptScore W2329326109C33923547 @default.
- W2329326109 hasConceptScore W2329326109C41008148 @default.
- W2329326109 hasConceptScore W2329326109C50644808 @default.
- W2329326109 hasConceptScore W2329326109C77088390 @default.
- W2329326109 hasConceptScore W2329326109C78762247 @default.
- W2329326109 hasConceptScore W2329326109C9652623 @default.
- W2329326109 hasLocation W23293261091 @default.
- W2329326109 hasOpenAccess W2329326109 @default.
- W2329326109 hasPrimaryLocation W23293261091 @default.
- W2329326109 hasRelatedWork W1997260870 @default.
- W2329326109 hasRelatedWork W2081035100 @default.
- W2329326109 hasRelatedWork W2130489565 @default.
- W2329326109 hasRelatedWork W2386387936 @default.
- W2329326109 hasRelatedWork W2497175360 @default.
- W2329326109 hasRelatedWork W3035522307 @default.
- W2329326109 hasRelatedWork W3206324740 @default.
- W2329326109 hasRelatedWork W4230966067 @default.
- W2329326109 hasRelatedWork W4317831330 @default.
- W2329326109 hasRelatedWork W1629725936 @default.
- W2329326109 isParatext "false" @default.
- W2329326109 isRetracted "false" @default.
- W2329326109 magId "2329326109" @default.
- W2329326109 workType "article" @default.