Matches in SemOpenAlex for { <https://semopenalex.org/work/W2330046647> ?p ?o ?g. }
- W2330046647 endingPage "2426" @default.
- W2330046647 startingPage "2403" @default.
- W2330046647 abstract "Abstract An ensemble of the three-dimensional variational data assimilation (En3DA) method for convective-scale weather has been developed. It consists of an ensemble of three-dimensional variational data assimilations and forecasts in which member differences are introduced by perturbing initial conditions and/or observations, and it uses flow-dependent error covariances generated by the ensemble forecasts. The method is applied to the assimilation of simulated radar data for a supercell storm. Results indicate that the flow-dependent ensemble covariances are effective in enabling convective-scale analyses, as the most important features of the simulated storm, including the low-level cold pool and midlevel mesocyclone, are well analyzed. Several groups of sensitivity experiments are conducted to test the robustness of the method. The first group demonstrates that incorporating a mass continuity equation as a weak constraint into the En3DA algorithm can improve the quality of the analyses when radial velocity observations contain large errors. In the second group of experiments, the sensitivity of analyses to the microphysical parameterization scheme is explored. Results indicate that the En3DA analyses are quite sensitive to differences in the microphysics scheme, suggesting that ensemble forecasts with multiple microphysics schemes could reduce uncertainty related to model physics errors. Experiments also show that assimilating reflectivity observations can reduce spinup time and that it has a small positive impact on the quality of the wind field analysis. Of the threshold values tested for assimilating reflectivity observations, 15 dBZ provides the best analysis. The final group of experiments demonstrates that it is not necessary to perturb radial velocity observations for every ensemble number in order to improve the quality of the analysis." @default.
- W2330046647 created "2016-06-24" @default.
- W2330046647 creator A5001636438 @default.
- W2330046647 creator A5016666242 @default.
- W2330046647 creator A5024751783 @default.
- W2330046647 creator A5080039310 @default.
- W2330046647 date "2016-06-01" @default.
- W2330046647 modified "2023-10-16" @default.
- W2330046647 title "OSSEs for an Ensemble 3DVAR Data Assimilation System with Radar Observations of Convective Storms" @default.
- W2330046647 cites W1546628974 @default.
- W2330046647 cites W1555849313 @default.
- W2330046647 cites W1963782694 @default.
- W2330046647 cites W1972809973 @default.
- W2330046647 cites W1974537952 @default.
- W2330046647 cites W1976703536 @default.
- W2330046647 cites W1980785126 @default.
- W2330046647 cites W1981476726 @default.
- W2330046647 cites W1983882727 @default.
- W2330046647 cites W1984310153 @default.
- W2330046647 cites W1988097696 @default.
- W2330046647 cites W1988927531 @default.
- W2330046647 cites W1998322203 @default.
- W2330046647 cites W2004889365 @default.
- W2330046647 cites W2006655108 @default.
- W2330046647 cites W2014012451 @default.
- W2330046647 cites W2015986688 @default.
- W2330046647 cites W2016866892 @default.
- W2330046647 cites W2019775760 @default.
- W2330046647 cites W2024414272 @default.
- W2330046647 cites W2030774493 @default.
- W2330046647 cites W2031547752 @default.
- W2330046647 cites W2031776013 @default.
- W2330046647 cites W2044380554 @default.
- W2330046647 cites W2048712177 @default.
- W2330046647 cites W2050814275 @default.
- W2330046647 cites W2062890270 @default.
- W2330046647 cites W2069061556 @default.
- W2330046647 cites W2070321567 @default.
- W2330046647 cites W2078451609 @default.
- W2330046647 cites W2079321637 @default.
- W2330046647 cites W2080108887 @default.
- W2330046647 cites W2092814042 @default.
- W2330046647 cites W2096107489 @default.
- W2330046647 cites W2099609198 @default.
- W2330046647 cites W2100867230 @default.
- W2330046647 cites W2102890156 @default.
- W2330046647 cites W2106064883 @default.
- W2330046647 cites W2117009567 @default.
- W2330046647 cites W2117608312 @default.
- W2330046647 cites W2118264819 @default.
- W2330046647 cites W2120349205 @default.
- W2330046647 cites W2121385267 @default.
- W2330046647 cites W2122021473 @default.
- W2330046647 cites W2122472480 @default.
- W2330046647 cites W2124506875 @default.
- W2330046647 cites W2127183064 @default.
- W2330046647 cites W2130102791 @default.
- W2330046647 cites W2131231788 @default.
- W2330046647 cites W2133060702 @default.
- W2330046647 cites W2136094820 @default.
- W2330046647 cites W2137670020 @default.
- W2330046647 cites W2147698782 @default.
- W2330046647 cites W2150080733 @default.
- W2330046647 cites W2150405573 @default.
- W2330046647 cites W2156122378 @default.
- W2330046647 cites W2157098139 @default.
- W2330046647 cites W2157607816 @default.
- W2330046647 cites W2159280505 @default.
- W2330046647 cites W2160444846 @default.
- W2330046647 cites W2162870936 @default.
- W2330046647 cites W2169448972 @default.
- W2330046647 cites W2170957301 @default.
- W2330046647 cites W2189149065 @default.
- W2330046647 cites W4253843360 @default.
- W2330046647 doi "https://doi.org/10.1175/jas-d-15-0311.1" @default.
- W2330046647 hasPublicationYear "2016" @default.
- W2330046647 type Work @default.
- W2330046647 sameAs 2330046647 @default.
- W2330046647 citedByCount "41" @default.
- W2330046647 countsByYear W23300466472016 @default.
- W2330046647 countsByYear W23300466472017 @default.
- W2330046647 countsByYear W23300466472018 @default.
- W2330046647 countsByYear W23300466472019 @default.
- W2330046647 countsByYear W23300466472020 @default.
- W2330046647 countsByYear W23300466472021 @default.
- W2330046647 countsByYear W23300466472022 @default.
- W2330046647 crossrefType "journal-article" @default.
- W2330046647 hasAuthorship W2330046647A5001636438 @default.
- W2330046647 hasAuthorship W2330046647A5016666242 @default.
- W2330046647 hasAuthorship W2330046647A5024751783 @default.
- W2330046647 hasAuthorship W2330046647A5080039310 @default.
- W2330046647 hasBestOaLocation W23300466471 @default.
- W2330046647 hasConcept C104317684 @default.
- W2330046647 hasConcept C105306849 @default.
- W2330046647 hasConcept C10899652 @default.
- W2330046647 hasConcept C119898033 @default.
- W2330046647 hasConcept C121332964 @default.
- W2330046647 hasConcept C136498428 @default.