Matches in SemOpenAlex for { <https://semopenalex.org/work/W2330062918> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2330062918 abstract "Abstract Multisource and multiscale modelling of formation permeability is a crucial step in overall reservoir characterization. Thus it is important to find out an efficient algorithm to accurately model permeability given well logs data. In this paper, an integrated procedure was adopted for modelling formation core permeability given well logs and Lithofacies classification for a well in sandstone formation in South Rumaila Oil Field, located in Iraq. The core permeability was modelled give well logs interpretation: neutron porosity, shale volume, and water saturation as function of depth, in addition to the vertical Lithofacies sequences. The statistical learning algorithms that were adopted in this paper are Generalized Linear Models (GLM) & Smooth Generalized Additive Model (sGAM) for permeability and Probabilistic Neural Networks (PNN) for Lithofacies prediction. Firstly, the Probabilistic Neural Networks was adopted for modelling and prediction the continuous and discrete Lithofacies distribution. The classified Lithofacies were considered as a discrete independent variable in core permeability modelling in order to provide different model fits given each Lithofacies type to capture the permeability variation. Then, GLM and sGAM models were applied to build the statistical modelling and create the relationship between core permeability and the explanatory variables of well logs and Lithofacies. GLM considers the maximum likelihood function to estimate the coefficients; however, sGAM considers a sum of nonparametric smoothing functions to identify nonlinear relationships depending on the degree of smoothing. The cubic spline function provides the closest fit as it minimizes a penalized negative log-likelihood function, which represents the smooth terms, by minimizing of an internal generalized cross validation function by iteratively reweighted least squares. In sGAM results, Root Mean Square Prediction Error (RMSPE) and the R-squared have better values than GLM especially in the reduced models. The stepwise elimination was considered to find the best predictors subset in GLM; nevertheless, the non-influential predictors in sGAM were recognized and treated as splines smoothed term to ensure rejection for the null hypothesis and ensure the confidence interval to be greater than 95%. The sGAM model has led to overcome the multicollinearity that was available between one pair of the predictors by using the smoothed terms. All the multivariate statistics analyses of Lithofacies classification and permeability modelling with results visualizations were done through R, the most powerful open-source statistical computing languages." @default.
- W2330062918 created "2016-06-24" @default.
- W2330062918 creator A5027047123 @default.
- W2330062918 creator A5058402953 @default.
- W2330062918 date "2015-09-14" @default.
- W2330062918 modified "2023-09-23" @default.
- W2330062918 title "Incorporating Lithofacies Classification and well logs into Statistical Learning Algorithms for Comparative Multisource Permeability Modelling" @default.
- W2330062918 cites W1592805114 @default.
- W2330062918 cites W1982638803 @default.
- W2330062918 cites W1992359303 @default.
- W2330062918 cites W1996877265 @default.
- W2330062918 cites W1996901038 @default.
- W2330062918 cites W1997126365 @default.
- W2330062918 cites W2024046085 @default.
- W2330062918 cites W2034303231 @default.
- W2330062918 cites W2036436471 @default.
- W2330062918 cites W2060298585 @default.
- W2330062918 cites W2078200337 @default.
- W2330062918 cites W2085014703 @default.
- W2330062918 cites W2090525252 @default.
- W2330062918 cites W2094328434 @default.
- W2330062918 cites W2118845193 @default.
- W2330062918 cites W2246833033 @default.
- W2330062918 cites W2326962180 @default.
- W2330062918 cites W2328495118 @default.
- W2330062918 cites W2333431616 @default.
- W2330062918 cites W2508465196 @default.
- W2330062918 cites W2797583072 @default.
- W2330062918 cites W1968763486 @default.
- W2330062918 cites W1994064952 @default.
- W2330062918 doi "https://doi.org/10.2118/175776-ms" @default.
- W2330062918 hasPublicationYear "2015" @default.
- W2330062918 type Work @default.
- W2330062918 sameAs 2330062918 @default.
- W2330062918 citedByCount "8" @default.
- W2330062918 countsByYear W23300629182016 @default.
- W2330062918 countsByYear W23300629182017 @default.
- W2330062918 countsByYear W23300629182018 @default.
- W2330062918 countsByYear W23300629182021 @default.
- W2330062918 crossrefType "proceedings-article" @default.
- W2330062918 hasAuthorship W2330062918A5027047123 @default.
- W2330062918 hasAuthorship W2330062918A5058402953 @default.
- W2330062918 hasConcept C11413529 @default.
- W2330062918 hasConcept C119857082 @default.
- W2330062918 hasConcept C127313418 @default.
- W2330062918 hasConcept C154945302 @default.
- W2330062918 hasConcept C41008148 @default.
- W2330062918 hasConceptScore W2330062918C11413529 @default.
- W2330062918 hasConceptScore W2330062918C119857082 @default.
- W2330062918 hasConceptScore W2330062918C127313418 @default.
- W2330062918 hasConceptScore W2330062918C154945302 @default.
- W2330062918 hasConceptScore W2330062918C41008148 @default.
- W2330062918 hasLocation W23300629181 @default.
- W2330062918 hasOpenAccess W2330062918 @default.
- W2330062918 hasPrimaryLocation W23300629181 @default.
- W2330062918 hasRelatedWork W1087007263 @default.
- W2330062918 hasRelatedWork W1494264608 @default.
- W2330062918 hasRelatedWork W1586054314 @default.
- W2330062918 hasRelatedWork W1594914815 @default.
- W2330062918 hasRelatedWork W1984107590 @default.
- W2330062918 hasRelatedWork W2000465191 @default.
- W2330062918 hasRelatedWork W2085014703 @default.
- W2330062918 hasRelatedWork W2118625899 @default.
- W2330062918 hasRelatedWork W2139673014 @default.
- W2330062918 hasRelatedWork W2151067783 @default.
- W2330062918 hasRelatedWork W2328495118 @default.
- W2330062918 hasRelatedWork W2333673728 @default.
- W2330062918 hasRelatedWork W2471596714 @default.
- W2330062918 hasRelatedWork W2806125739 @default.
- W2330062918 hasRelatedWork W2896533516 @default.
- W2330062918 hasRelatedWork W2899366590 @default.
- W2330062918 hasRelatedWork W2940577803 @default.
- W2330062918 hasRelatedWork W2981085660 @default.
- W2330062918 hasRelatedWork W3185948821 @default.
- W2330062918 hasRelatedWork W2403026333 @default.
- W2330062918 isParatext "false" @default.
- W2330062918 isRetracted "false" @default.
- W2330062918 magId "2330062918" @default.
- W2330062918 workType "article" @default.