Matches in SemOpenAlex for { <https://semopenalex.org/work/W2330282654> ?p ?o ?g. }
- W2330282654 endingPage "2665" @default.
- W2330282654 startingPage "2656" @default.
- W2330282654 abstract "Nanoscale structures, including molecules, supramolecules, polymers, functionalized surfaces, and crystalline/amorphous solids, can commute between two or more forms, displaying contrasts in their nonlinear optical (NLO) properties. Because of this property, they have high potential for applications in data storage, signal processing, and sensing. As potential candidates for integration into responsive materials, scientists have been intensely studying organic and organometallic molecules with switchable first hyperpolarizability over the past two decades. As a result of this, researchers have been able to synthesize and characterize several families of molecular NLO switches that differ by the stimulus used to trigger the commutation. These stimuli can include light irradiation, pH variation, redox reaction, and ion recognition, among others. The design of multistate (including several switchable units) and multifunctional (triggered with different stimuli) systems has also motivated a large amount of work, aiming at the improvement of the storage capacity of optical memories or the diversification of the addressability of the devices. In complement to the synthesis of the compounds and the characterization of their NLO responses by means of hyper-Rayleigh scattering, quantum chemical calculations play a key role in the design of molecular switches with high first hyperpolarizability contrasts. Through the latter, we can gain a fundamental understanding of the various factors governing the efficiency of the switches. These are not easily accessible experimentally, and include donor/acceptor contributions, frequency dispersion, and solvent effects. In this Account, we illustrate the similarities of the experimental and theoretical tools to design and characterize highly efficient NLO switches but also the difficulties in comparing them. After providing a critical overview of the different theoretical approaches used for evaluating the first hyperpolarizabilities, we report two case studies in which theoretical simulations have provided guidelines to design NLO switches with improved efficiencies. The first example presents the joint theoretical/experimental characterization of a new family of multi-addressable NLO switches based on benzazolo-oxazolidine derivatives. The second focuses on the photoinduced commutation in merocyanine-spiropyran systems, where the significant NLO contrast could be exploited for metal cation identification in a new generation of multiusage sensing devices. Finally, we illustrate the impact of environment on the NLO switching properties, with examples based on the keto-enol equilibrium in anil derivatives. Through these representative examples, we demonstrate that the rational design of molecular NLO switches, which combines experimental and theoretical approaches, has reached maturity. Future challenges consist in extending the investigated objects to supramolecular architectures involving several NLO-responsive units, in order to exploit their cooperative effects for enhancing the NLO responses and contrasts." @default.
- W2330282654 created "2016-06-24" @default.
- W2330282654 creator A5004174735 @default.
- W2330282654 creator A5026910716 @default.
- W2330282654 creator A5034440812 @default.
- W2330282654 creator A5076318350 @default.
- W2330282654 creator A5089076696 @default.
- W2330282654 creator A5090067770 @default.
- W2330282654 date "2013-07-19" @default.
- W2330282654 modified "2023-10-13" @default.
- W2330282654 title "Design and Characterization of Molecular Nonlinear Optical Switches" @default.
- W2330282654 cites W1964164328 @default.
- W2330282654 cites W1970025605 @default.
- W2330282654 cites W1970424757 @default.
- W2330282654 cites W1971316520 @default.
- W2330282654 cites W1982353235 @default.
- W2330282654 cites W1983565883 @default.
- W2330282654 cites W1993203873 @default.
- W2330282654 cites W1995455725 @default.
- W2330282654 cites W2003192764 @default.
- W2330282654 cites W2003566444 @default.
- W2330282654 cites W2003615189 @default.
- W2330282654 cites W2006554326 @default.
- W2330282654 cites W2006840690 @default.
- W2330282654 cites W2007312601 @default.
- W2330282654 cites W2016237188 @default.
- W2330282654 cites W2020707326 @default.
- W2330282654 cites W2021651720 @default.
- W2330282654 cites W2022057580 @default.
- W2330282654 cites W2023649029 @default.
- W2330282654 cites W2024355976 @default.
- W2330282654 cites W2024881136 @default.
- W2330282654 cites W2027011380 @default.
- W2330282654 cites W2030609516 @default.
- W2330282654 cites W2031466656 @default.
- W2330282654 cites W2032061727 @default.
- W2330282654 cites W2033310157 @default.
- W2330282654 cites W2038434291 @default.
- W2330282654 cites W2042295541 @default.
- W2330282654 cites W2043973818 @default.
- W2330282654 cites W2044599397 @default.
- W2330282654 cites W2046664565 @default.
- W2330282654 cites W2065650357 @default.
- W2330282654 cites W2066251996 @default.
- W2330282654 cites W2066987214 @default.
- W2330282654 cites W2067908861 @default.
- W2330282654 cites W2071102901 @default.
- W2330282654 cites W2072405411 @default.
- W2330282654 cites W2075770383 @default.
- W2330282654 cites W2076247922 @default.
- W2330282654 cites W2078457808 @default.
- W2330282654 cites W2080011601 @default.
- W2330282654 cites W2089162964 @default.
- W2330282654 cites W2118991015 @default.
- W2330282654 cites W2119071222 @default.
- W2330282654 cites W2119884286 @default.
- W2330282654 cites W2125555408 @default.
- W2330282654 cites W2132953434 @default.
- W2330282654 cites W2315602374 @default.
- W2330282654 cites W2320469549 @default.
- W2330282654 cites W2321842368 @default.
- W2330282654 cites W2499753008 @default.
- W2330282654 cites W2951887333 @default.
- W2330282654 cites W4214729280 @default.
- W2330282654 doi "https://doi.org/10.1021/ar4000955" @default.
- W2330282654 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23865890" @default.
- W2330282654 hasPublicationYear "2013" @default.
- W2330282654 type Work @default.
- W2330282654 sameAs 2330282654 @default.
- W2330282654 citedByCount "301" @default.
- W2330282654 countsByYear W23302826542013 @default.
- W2330282654 countsByYear W23302826542014 @default.
- W2330282654 countsByYear W23302826542015 @default.
- W2330282654 countsByYear W23302826542016 @default.
- W2330282654 countsByYear W23302826542017 @default.
- W2330282654 countsByYear W23302826542018 @default.
- W2330282654 countsByYear W23302826542019 @default.
- W2330282654 countsByYear W23302826542020 @default.
- W2330282654 countsByYear W23302826542021 @default.
- W2330282654 countsByYear W23302826542022 @default.
- W2330282654 countsByYear W23302826542023 @default.
- W2330282654 crossrefType "journal-article" @default.
- W2330282654 hasAuthorship W2330282654A5004174735 @default.
- W2330282654 hasAuthorship W2330282654A5026910716 @default.
- W2330282654 hasAuthorship W2330282654A5034440812 @default.
- W2330282654 hasAuthorship W2330282654A5076318350 @default.
- W2330282654 hasAuthorship W2330282654A5089076696 @default.
- W2330282654 hasAuthorship W2330282654A5090067770 @default.
- W2330282654 hasConcept C121332964 @default.
- W2330282654 hasConcept C158622935 @default.
- W2330282654 hasConcept C159467904 @default.
- W2330282654 hasConcept C171250308 @default.
- W2330282654 hasConcept C178790620 @default.
- W2330282654 hasConcept C185592680 @default.
- W2330282654 hasConcept C192562407 @default.
- W2330282654 hasConcept C2780694488 @default.
- W2330282654 hasConcept C2780841128 @default.
- W2330282654 hasConcept C2991936344 @default.