Matches in SemOpenAlex for { <https://semopenalex.org/work/W2330354313> ?p ?o ?g. }
Showing items 1 to 55 of
55
with 100 items per page.
- W2330354313 abstract "In this note, the present author’s recent works on nonlinear wave equations via KAM theory are introduced and reviewed. The existence of solutions, periodic in time, for non-linear wave (NLW) equations has been studied by many authors. A wide variety of methods such as bifurcation theory and variational techniques have been brought on this problem. See [11] and the references therein, for example. There are, however, relatively less methods to find the quasi-periodic solutions of NLW or other PDE’s. The KAM theory is a very powerful tool in order to construct families of quasi-periodic solutions, which are on an invariant manifold, for some nearly integrable Hamiltonian systems of finite many degrees of freedom. In the 1980’s,the celebrated KAM theory has been successfully extended to infinitely dimensional Hamiltonian systems of short range so as to deal with certain class of Hamiltonian networks of weakly coupled oscillators. Vittot & Bellissard [27], Frohlich, Spencer & Wayne [15] showed that there are plenty of almost periodic solutions for some weakly coupled oscillators of short range. In [30], it was also shown that there are plenty of quasi-periodic solutions for some weakly coupled oscillators of short range. Because of the restrict of short range, those results obtained in [27, 15] does not apply to PDE’s. In the 1980-90’s, the KAM theory has been significantly generalized, by Kuksin[17, 18, 19], to infinitely dimensional Hamiltonian systems without being of short range so as to show that there is quasi-periodic solution for some class of partial differential equations. Also see Poschel[24]. Let us focus our attention to the following nonlinear wave equation utt − uxx + V (x)u + u + h.o.t. = 0, (1) subject to Dirichlet and periodic boundary conditions on the space variable x. 1. Dirichlet boundary condition. In 1990, Wayne[28] obtained the time-quasiperiodic solutions of (1), when the potential V is lying on the outside of the set of some “bad” potentials. In [28], the set of all potentials is given some Gaussian measure and then the set of “bad” potentials is of small measure. Kuksin[17] assumed the potential V depends on n-parameters, namely, V = V (x; a1, ..., an), and showed that there are many quasi-periodic solutions of (1) for “most” (in the sense of Lebesgue measure) parameters a’s. However, their results exclude the constant-value potential V (x) ≡ m ∈ R, in particular, V (x) ≡ 0. When the potential V is constant, the parameters required can be extracted from the ∗In memory of Prof Xunjing LI †Supported by NNSFC ‡School of mathematics, Fudan University, Shanghai 200433, China, Email: xpyuan@fudan.edu.cn" @default.
- W2330354313 created "2016-06-24" @default.
- W2330354313 creator A5018005349 @default.
- W2330354313 date "2007-09-01" @default.
- W2330354313 modified "2023-09-23" @default.
- W2330354313 title "RECENT PROGRESS ON NONLINEAR WAVE EQUATIONS VIA KAM THEORY" @default.
- W2330354313 cites W1508154630 @default.
- W2330354313 cites W1990521080 @default.
- W2330354313 cites W1994837375 @default.
- W2330354313 cites W2034493562 @default.
- W2330354313 cites W2042003945 @default.
- W2330354313 cites W2049236417 @default.
- W2330354313 cites W2057543910 @default.
- W2330354313 cites W2074343996 @default.
- W2330354313 cites W2097021094 @default.
- W2330354313 cites W2124529968 @default.
- W2330354313 cites W2154789637 @default.
- W2330354313 cites W2804708681 @default.
- W2330354313 cites W2809649272 @default.
- W2330354313 cites W3020410451 @default.
- W2330354313 cites W3101522821 @default.
- W2330354313 cites W563041026 @default.
- W2330354313 cites W63460483 @default.
- W2330354313 doi "https://doi.org/10.1142/9789812790552_0027" @default.
- W2330354313 hasPublicationYear "2007" @default.
- W2330354313 type Work @default.
- W2330354313 sameAs 2330354313 @default.
- W2330354313 citedByCount "0" @default.
- W2330354313 crossrefType "proceedings-article" @default.
- W2330354313 hasAuthorship W2330354313A5018005349 @default.
- W2330354313 hasConcept C121332964 @default.
- W2330354313 hasConcept C158622935 @default.
- W2330354313 hasConcept C41008148 @default.
- W2330354313 hasConcept C62520636 @default.
- W2330354313 hasConceptScore W2330354313C121332964 @default.
- W2330354313 hasConceptScore W2330354313C158622935 @default.
- W2330354313 hasConceptScore W2330354313C41008148 @default.
- W2330354313 hasConceptScore W2330354313C62520636 @default.
- W2330354313 hasLocation W23303543131 @default.
- W2330354313 hasOpenAccess W2330354313 @default.
- W2330354313 hasPrimaryLocation W23303543131 @default.
- W2330354313 hasRelatedWork W1536502753 @default.
- W2330354313 hasRelatedWork W2748952813 @default.
- W2330354313 hasRelatedWork W2899084033 @default.
- W2330354313 hasRelatedWork W2902782467 @default.
- W2330354313 hasRelatedWork W2935759653 @default.
- W2330354313 hasRelatedWork W3033558109 @default.
- W2330354313 hasRelatedWork W3105167352 @default.
- W2330354313 hasRelatedWork W54078636 @default.
- W2330354313 hasRelatedWork W1501425562 @default.
- W2330354313 hasRelatedWork W2954470139 @default.
- W2330354313 isParatext "false" @default.
- W2330354313 isRetracted "false" @default.
- W2330354313 magId "2330354313" @default.
- W2330354313 workType "article" @default.