Matches in SemOpenAlex for { <https://semopenalex.org/work/W2330407838> ?p ?o ?g. }
- W2330407838 endingPage "529" @default.
- W2330407838 startingPage "521" @default.
- W2330407838 abstract "ConspectusEnantiomeric excess (ee) is a measure of the purity of an enantiomer of a chiral compound with respect to the presence of the complementary enantiomer. It is an important aspect of chemistry, especially in the fields of pharmaceuticals and asymmetric catalysis. Existing methods for determination of enantiomeric excesses using nuclear magnetic resonance (NMR) spectroscopy mostly rely on special chiral reagents (auxiliaries) that form two or more diastereomeric complexes with a chiral compound. As a result of this, the NMR spectrum of each enantiomer is different, allowing the determination of enantiomeric excess.In this Account, we describe a molecular design process that has allowed us to prepare prochiral solvating agents for NMR determination of ee of a wide variety of analyte types. At the outset of this work, we initially encountered the phenomenon of NMR peak splitting in the oxoporphyrinogen (OxP) host component of a supramolecular host–guest complex, where the extent of the splitting is apparently proportional to the guests’ ee. Upon closer examination of the mechanism of action, it was found that several complicating factors, including prototropic tautomerism, macrocyclic inversion (ring-flipping), and 1:2 host–guest stoichiometry, obstruct potential applications of OxP as a chiral solvating agent. By considering the molecular conformation of the OxP host, a saddle-shaped calix[4]pyrrole, we moved to study the tetraphenylporphyrin (TPP) dication since it has a similar form, and it was found that it could also be used to probe ee. However, although TPP does not suffer from disadvantageous tautomeric processes, it is still subject to macrocyclic inversion and has the additional serious disadvantage of operating for ee sensing only at depressed temperatures. The intrinsic disadvantages of the OxP and TPP systems were finally overcome by covalently modifying the OxP chromophore by regioselective N-alkylation at one face of the molecule. This procedure yields a host Bz2OxP that undergoes 1:1 host–guest interactions, cannot be protonated (and so does not suffer drawbacks due to tautomeric processes), and can interact solely through hydrogen bonding with a much wider range of analyte types, including acids, esters, amines (including amino acid derivatives), and ketones, for the determination of their ee at room temperature.Chiral sensing, in this case, can be understood by considering the breakdown of the host’s symmetry when it interacts with a chiral guest under fast exchange. Furthermore, chirality discrimination (i.e., which is the major enantiomer in a sample) can be performed by addition of a small amount of one of the known enantiomers. Adaptation of a symmetrical molecule for ee sensing presents certain intrinsic advantages, including identical binding constants of each enantiomer. Our results indicate that other symmetrical molecules might also be useful as NMR probes of enantiopurity. These systems could provide insights into important chirality principles such as majority rule, intermolecular chirality transfer, and asymmetric reactions. The Bz2OxP system is also of note from the point of view that it does not rely on the formation of diastereomers." @default.
- W2330407838 created "2016-06-24" @default.
- W2330407838 creator A5004504609 @default.
- W2330407838 creator A5009056879 @default.
- W2330407838 creator A5010999758 @default.
- W2330407838 creator A5030953989 @default.
- W2330407838 creator A5074350830 @default.
- W2330407838 date "2015-03-03" @default.
- W2330407838 modified "2023-10-16" @default.
- W2330407838 title "Chiral Sensing by Nonchiral Tetrapyrroles" @default.
- W2330407838 cites W1965668217 @default.
- W2330407838 cites W1969094618 @default.
- W2330407838 cites W1973272027 @default.
- W2330407838 cites W1974964454 @default.
- W2330407838 cites W1977982687 @default.
- W2330407838 cites W1980949293 @default.
- W2330407838 cites W1982855504 @default.
- W2330407838 cites W1991534495 @default.
- W2330407838 cites W2003727193 @default.
- W2330407838 cites W2009079556 @default.
- W2330407838 cites W2011094304 @default.
- W2330407838 cites W2018218862 @default.
- W2330407838 cites W2027976937 @default.
- W2330407838 cites W2049724581 @default.
- W2330407838 cites W2050693310 @default.
- W2330407838 cites W2056397047 @default.
- W2330407838 cites W2080470265 @default.
- W2330407838 cites W2083108945 @default.
- W2330407838 cites W2085268679 @default.
- W2330407838 cites W2089618088 @default.
- W2330407838 cites W2092440191 @default.
- W2330407838 cites W2096133031 @default.
- W2330407838 cites W2097495390 @default.
- W2330407838 cites W2129689001 @default.
- W2330407838 cites W2143070005 @default.
- W2330407838 cites W2147890019 @default.
- W2330407838 cites W2154180647 @default.
- W2330407838 cites W2171132808 @default.
- W2330407838 cites W2171189204 @default.
- W2330407838 cites W2321214890 @default.
- W2330407838 cites W2333065922 @default.
- W2330407838 cites W2949605486 @default.
- W2330407838 cites W93063096 @default.
- W2330407838 doi "https://doi.org/10.1021/acs.accounts.5b00005" @default.
- W2330407838 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25734700" @default.
- W2330407838 hasPublicationYear "2015" @default.
- W2330407838 type Work @default.
- W2330407838 sameAs 2330407838 @default.
- W2330407838 citedByCount "87" @default.
- W2330407838 countsByYear W23304078382015 @default.
- W2330407838 countsByYear W23304078382016 @default.
- W2330407838 countsByYear W23304078382017 @default.
- W2330407838 countsByYear W23304078382018 @default.
- W2330407838 countsByYear W23304078382019 @default.
- W2330407838 countsByYear W23304078382020 @default.
- W2330407838 countsByYear W23304078382021 @default.
- W2330407838 countsByYear W23304078382022 @default.
- W2330407838 countsByYear W23304078382023 @default.
- W2330407838 crossrefType "journal-article" @default.
- W2330407838 hasAuthorship W2330407838A5004504609 @default.
- W2330407838 hasAuthorship W2330407838A5009056879 @default.
- W2330407838 hasAuthorship W2330407838A5010999758 @default.
- W2330407838 hasAuthorship W2330407838A5030953989 @default.
- W2330407838 hasAuthorship W2330407838A5074350830 @default.
- W2330407838 hasConcept C111233374 @default.
- W2330407838 hasConcept C138716334 @default.
- W2330407838 hasConcept C147597530 @default.
- W2330407838 hasConcept C16838498 @default.
- W2330407838 hasConcept C178790620 @default.
- W2330407838 hasConcept C185592680 @default.
- W2330407838 hasConcept C21951064 @default.
- W2330407838 hasConcept C2779400197 @default.
- W2330407838 hasConcept C32909587 @default.
- W2330407838 hasConcept C486523 @default.
- W2330407838 hasConcept C66974803 @default.
- W2330407838 hasConcept C71240020 @default.
- W2330407838 hasConcept C93275456 @default.
- W2330407838 hasConceptScore W2330407838C111233374 @default.
- W2330407838 hasConceptScore W2330407838C138716334 @default.
- W2330407838 hasConceptScore W2330407838C147597530 @default.
- W2330407838 hasConceptScore W2330407838C16838498 @default.
- W2330407838 hasConceptScore W2330407838C178790620 @default.
- W2330407838 hasConceptScore W2330407838C185592680 @default.
- W2330407838 hasConceptScore W2330407838C21951064 @default.
- W2330407838 hasConceptScore W2330407838C2779400197 @default.
- W2330407838 hasConceptScore W2330407838C32909587 @default.
- W2330407838 hasConceptScore W2330407838C486523 @default.
- W2330407838 hasConceptScore W2330407838C66974803 @default.
- W2330407838 hasConceptScore W2330407838C71240020 @default.
- W2330407838 hasConceptScore W2330407838C93275456 @default.
- W2330407838 hasFunder F4320320912 @default.
- W2330407838 hasFunder F4320338075 @default.
- W2330407838 hasIssue "3" @default.
- W2330407838 hasLocation W23304078381 @default.
- W2330407838 hasLocation W23304078382 @default.
- W2330407838 hasOpenAccess W2330407838 @default.
- W2330407838 hasPrimaryLocation W23304078381 @default.
- W2330407838 hasRelatedWork W1991534495 @default.