Matches in SemOpenAlex for { <https://semopenalex.org/work/W2330492788> ?p ?o ?g. }
- W2330492788 endingPage "263" @default.
- W2330492788 startingPage "251" @default.
- W2330492788 abstract "Abstract High-fidelity and computationally efficient energy forecasting models for building systems are needed to ensure optimal automatic operation, reduce energy consumption, and improve the building’s resilience capability to power disturbances. Various models have been developed to forecast building energy consumption. However, given buildings have different characteristics and operating conditions, model performance varies. Existing research has mainly taken a trial-and-error approach by developing multiple models and identifying the best performer for a specific building, or presumed one universal model form which is applied on different building cases. To the best of our knowledge, there does not exist a generalized system framework which can recommend appropriate models to forecast the building energy profiles based on building characteristics. To bridge this research gap, we propose a meta-learning based framework, termed Building Energy Model Recommendation System (BEMR). Based on the building’s physical features as well as statistical and time series meta-features extracted from the operational data and energy consumption data, BEMR is able to identify the most appropriate load forecasting model for each unique building. Three sets of experiments on 48 test buildings and one real building were conducted. The first experiment was to test the accuracy of BEMR when the training data and testing data cover the same condition. BEMR correctly identified the best model on 90% of the buildings. The second experiment was to test the robustness of the BEMR when the testing data is only partially covered by the training data. BEMR correctly identified the best model on 83% of the buildings. The third experiment uses a real building case to validate the proposed framework and the result shows promising applicability and extensibility. The experimental results show that BEMR is capable of adapting to a wide variety of building types ranging from a restaurant to a large office, and gives excellent performance in terms of both modeling accuracy and computational efficiency." @default.
- W2330492788 created "2016-06-24" @default.
- W2330492788 creator A5017739626 @default.
- W2330492788 creator A5025560682 @default.
- W2330492788 creator A5034285792 @default.
- W2330492788 creator A5069823101 @default.
- W2330492788 creator A5089704892 @default.
- W2330492788 date "2016-06-01" @default.
- W2330492788 modified "2023-10-17" @default.
- W2330492788 title "Short-term building energy model recommendation system: A meta-learning approach" @default.
- W2330492788 cites W101507059 @default.
- W2330492788 cites W1963886895 @default.
- W2330492788 cites W1965345917 @default.
- W2330492788 cites W1986478348 @default.
- W2330492788 cites W1988002662 @default.
- W2330492788 cites W1988099502 @default.
- W2330492788 cites W1989989024 @default.
- W2330492788 cites W1993693968 @default.
- W2330492788 cites W1999989204 @default.
- W2330492788 cites W2000663017 @default.
- W2330492788 cites W2004026774 @default.
- W2330492788 cites W2014828134 @default.
- W2330492788 cites W2017337412 @default.
- W2330492788 cites W2019330716 @default.
- W2330492788 cites W2019993753 @default.
- W2330492788 cites W2039493274 @default.
- W2330492788 cites W2040395995 @default.
- W2330492788 cites W2040870580 @default.
- W2330492788 cites W2043193190 @default.
- W2330492788 cites W2045001586 @default.
- W2330492788 cites W2048711666 @default.
- W2330492788 cites W2051607409 @default.
- W2330492788 cites W2053014747 @default.
- W2330492788 cites W2063524846 @default.
- W2330492788 cites W2068438324 @default.
- W2330492788 cites W2076520076 @default.
- W2330492788 cites W2079560958 @default.
- W2330492788 cites W2080877209 @default.
- W2330492788 cites W2086388237 @default.
- W2330492788 cites W2090457102 @default.
- W2330492788 cites W2098057602 @default.
- W2330492788 cites W2105916576 @default.
- W2330492788 cites W2108152153 @default.
- W2330492788 cites W2121844625 @default.
- W2330492788 cites W2122739133 @default.
- W2330492788 cites W2141408223 @default.
- W2330492788 cites W2146588145 @default.
- W2330492788 cites W2151049413 @default.
- W2330492788 cites W2151767444 @default.
- W2330492788 cites W2160567154 @default.
- W2330492788 cites W2162174678 @default.
- W2330492788 cites W2171168419 @default.
- W2330492788 cites W2276272497 @default.
- W2330492788 cites W3123547113 @default.
- W2330492788 cites W3123554859 @default.
- W2330492788 doi "https://doi.org/10.1016/j.apenergy.2016.03.112" @default.
- W2330492788 hasPublicationYear "2016" @default.
- W2330492788 type Work @default.
- W2330492788 sameAs 2330492788 @default.
- W2330492788 citedByCount "78" @default.
- W2330492788 countsByYear W23304927882015 @default.
- W2330492788 countsByYear W23304927882016 @default.
- W2330492788 countsByYear W23304927882017 @default.
- W2330492788 countsByYear W23304927882018 @default.
- W2330492788 countsByYear W23304927882019 @default.
- W2330492788 countsByYear W23304927882020 @default.
- W2330492788 countsByYear W23304927882021 @default.
- W2330492788 countsByYear W23304927882022 @default.
- W2330492788 countsByYear W23304927882023 @default.
- W2330492788 crossrefType "journal-article" @default.
- W2330492788 hasAuthorship W2330492788A5017739626 @default.
- W2330492788 hasAuthorship W2330492788A5025560682 @default.
- W2330492788 hasAuthorship W2330492788A5034285792 @default.
- W2330492788 hasAuthorship W2330492788A5069823101 @default.
- W2330492788 hasAuthorship W2330492788A5089704892 @default.
- W2330492788 hasBestOaLocation W23304927881 @default.
- W2330492788 hasConcept C105795698 @default.
- W2330492788 hasConcept C121332964 @default.
- W2330492788 hasConcept C186370098 @default.
- W2330492788 hasConcept C199360897 @default.
- W2330492788 hasConcept C2781341389 @default.
- W2330492788 hasConcept C33923547 @default.
- W2330492788 hasConcept C41008148 @default.
- W2330492788 hasConcept C61797465 @default.
- W2330492788 hasConcept C62520636 @default.
- W2330492788 hasConcept C86610423 @default.
- W2330492788 hasConceptScore W2330492788C105795698 @default.
- W2330492788 hasConceptScore W2330492788C121332964 @default.
- W2330492788 hasConceptScore W2330492788C186370098 @default.
- W2330492788 hasConceptScore W2330492788C199360897 @default.
- W2330492788 hasConceptScore W2330492788C2781341389 @default.
- W2330492788 hasConceptScore W2330492788C33923547 @default.
- W2330492788 hasConceptScore W2330492788C41008148 @default.
- W2330492788 hasConceptScore W2330492788C61797465 @default.
- W2330492788 hasConceptScore W2330492788C62520636 @default.
- W2330492788 hasConceptScore W2330492788C86610423 @default.
- W2330492788 hasFunder F4320306076 @default.
- W2330492788 hasFunder F4320306108 @default.