Matches in SemOpenAlex for { <https://semopenalex.org/work/W2330698946> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2330698946 endingPage "219" @default.
- W2330698946 startingPage "211" @default.
- W2330698946 abstract "In [B1] the first author proved a theorem about differential algebraic groups (in the sense of Cassidy-Kolchin [C], [K2]) that implied the geometric LangMordell conjecture [L]; cf. Theorem 1 below. The proof in [B1] used an analytic argument, based on “Big Picard”. Hrushovski [H] was able to replace this analytic argument by a remarkable model theoretic argument, based in its turn on the difficult theory developed in [HZ]. Now Hrushovski’s model theoretic methods further lead to striking new results on differential algebraic groups [HS]; cf. Theorem 3 below. So a natural challenge presents itself: to find a proof for these new results that is free from model theory. In this note we shall give in particular a quick analytic proof of Theorem 3, based, again, on “Big Picard”. The main result of this note is the “Gap” Theorem 2 below, which should be viewed as a significant complement to Theorem 1; Theorems 1 and 2 will then easily imply Theorem 3. Some comments are in order concerning the role of the authors in this paper. The second author asked whether analytic methods as in [B1] could yield strong minimality and local modularity of the “Manin kernel” of a simple abelian variety which does not descend to the constants (Theorem 3 below). The first author then proved strong minimality (assertion 1 of Theorem 3) by proving a weaker version of Theorem 2 (namely for simple abelian varieties). The second author suggested some general ideas, analogous to those in [P1], for obtaining local modularity. In trying to carry out details, the first author came up with the proof of the present Theorem 2, from which everything follows. Recall some basic terminology of differential algebra [K1], [C], [B2]. (The definitions below will suffice to understand the statements of the Theorems below, without assuming any previous knowledge of differential algebra; for the proofs, however, familiarity with [B1], [B2] is required.) Let F be a δ−field (i.e. a field of characteristic zero equipped with a derivation δ.) One defines the ring of δ−polynomials F{y1, ..., yN} as the ring of usual polynomials with F−coefficients in the variables δyj , 1 ≤ j ≤ N, i ≥ 0. There is an obvious notion of order for δ−polynomials. F is said to be δ−closed if for any A, B ∈ F{y}, B = 0, such that the order of A is strictly bigger than the order of B there" @default.
- W2330698946 created "2016-06-24" @default.
- W2330698946 creator A5082256769 @default.
- W2330698946 creator A5089545856 @default.
- W2330698946 date "1997-01-01" @default.
- W2330698946 modified "2023-10-16" @default.
- W2330698946 title "A gap theorem for abelian varieties over differential fields" @default.
- W2330698946 cites W1596509569 @default.
- W2330698946 cites W1980662086 @default.
- W2330698946 cites W1987867396 @default.
- W2330698946 cites W2021672354 @default.
- W2330698946 cites W2034341063 @default.
- W2330698946 cites W2076197985 @default.
- W2330698946 cites W2093322610 @default.
- W2330698946 cites W2146111369 @default.
- W2330698946 cites W2255333271 @default.
- W2330698946 cites W2515086467 @default.
- W2330698946 cites W2989627936 @default.
- W2330698946 cites W3037055975 @default.
- W2330698946 cites W562960540 @default.
- W2330698946 doi "https://doi.org/10.4310/mrl.1997.v4.n2.a4" @default.
- W2330698946 hasPublicationYear "1997" @default.
- W2330698946 type Work @default.
- W2330698946 sameAs 2330698946 @default.
- W2330698946 citedByCount "4" @default.
- W2330698946 crossrefType "journal-article" @default.
- W2330698946 hasAuthorship W2330698946A5082256769 @default.
- W2330698946 hasAuthorship W2330698946A5089545856 @default.
- W2330698946 hasBestOaLocation W23306989461 @default.
- W2330698946 hasConcept C127413603 @default.
- W2330698946 hasConcept C136170076 @default.
- W2330698946 hasConcept C146978453 @default.
- W2330698946 hasConcept C202444582 @default.
- W2330698946 hasConcept C33923547 @default.
- W2330698946 hasConcept C93226319 @default.
- W2330698946 hasConceptScore W2330698946C127413603 @default.
- W2330698946 hasConceptScore W2330698946C136170076 @default.
- W2330698946 hasConceptScore W2330698946C146978453 @default.
- W2330698946 hasConceptScore W2330698946C202444582 @default.
- W2330698946 hasConceptScore W2330698946C33923547 @default.
- W2330698946 hasConceptScore W2330698946C93226319 @default.
- W2330698946 hasIssue "2" @default.
- W2330698946 hasLocation W23306989461 @default.
- W2330698946 hasOpenAccess W2330698946 @default.
- W2330698946 hasPrimaryLocation W23306989461 @default.
- W2330698946 hasRelatedWork W1497986648 @default.
- W2330698946 hasRelatedWork W1678370088 @default.
- W2330698946 hasRelatedWork W2006990530 @default.
- W2330698946 hasRelatedWork W2021494526 @default.
- W2330698946 hasRelatedWork W2032361691 @default.
- W2330698946 hasRelatedWork W2149376139 @default.
- W2330698946 hasRelatedWork W2963456550 @default.
- W2330698946 hasRelatedWork W3083642434 @default.
- W2330698946 hasRelatedWork W776536739 @default.
- W2330698946 hasRelatedWork W2056205479 @default.
- W2330698946 hasVolume "4" @default.
- W2330698946 isParatext "false" @default.
- W2330698946 isRetracted "false" @default.
- W2330698946 magId "2330698946" @default.
- W2330698946 workType "article" @default.