Matches in SemOpenAlex for { <https://semopenalex.org/work/W2330711204> ?p ?o ?g. }
- W2330711204 endingPage "3321" @default.
- W2330711204 startingPage "3309" @default.
- W2330711204 abstract "Point cloud classification plays a critical role in point cloud processing and analysis. Accurately classifying objects on the ground in urban environments from airborne laser scanning (ALS) point clouds is a challenge because of their large variety, complex geometries, and visual appearances. In this paper, a novel framework is presented for effectively extracting the shape features of objects from an ALS point cloud, and then, it is used to classify large and small objects in a point cloud. In the framework, the point cloud is split into hierarchical clusters of different sizes based on a natural exponential function threshold. Then, to take advantage of hierarchical point cluster correlations, latent Dirichlet allocation and sparse coding are jointly performed to extract and encode the shape features of the multilevel point clusters. The features at different levels are used to capture information on the shapes of objects of different sizes. This way, robust and discriminative shape features of the objects can be identified, and thus, the precision of the classification is significantly improved, particularly for small objects." @default.
- W2330711204 created "2016-06-24" @default.
- W2330711204 creator A5003378750 @default.
- W2330711204 creator A5015366653 @default.
- W2330711204 creator A5027313468 @default.
- W2330711204 creator A5034411238 @default.
- W2330711204 creator A5039348214 @default.
- W2330711204 creator A5040607477 @default.
- W2330711204 creator A5044278476 @default.
- W2330711204 creator A5089171585 @default.
- W2330711204 date "2016-06-01" @default.
- W2330711204 modified "2023-10-14" @default.
- W2330711204 title "A Multilevel Point-Cluster-Based Discriminative Feature for ALS Point Cloud Classification" @default.
- W2330711204 cites W1506179068 @default.
- W2330711204 cites W1525032837 @default.
- W2330711204 cites W1568165162 @default.
- W2330711204 cites W1970723574 @default.
- W2330711204 cites W1973644502 @default.
- W2330711204 cites W1978879784 @default.
- W2330711204 cites W1979936637 @default.
- W2330711204 cites W1982405594 @default.
- W2330711204 cites W1985133440 @default.
- W2330711204 cites W1985908905 @default.
- W2330711204 cites W1990077509 @default.
- W2330711204 cites W1991129553 @default.
- W2330711204 cites W2001014393 @default.
- W2330711204 cites W2001563151 @default.
- W2330711204 cites W2010132303 @default.
- W2330711204 cites W2015139108 @default.
- W2330711204 cites W2019338222 @default.
- W2330711204 cites W2020257492 @default.
- W2330711204 cites W2022394120 @default.
- W2330711204 cites W2036718463 @default.
- W2330711204 cites W2040861824 @default.
- W2330711204 cites W2043857439 @default.
- W2330711204 cites W2045671290 @default.
- W2330711204 cites W2075565810 @default.
- W2330711204 cites W2102402541 @default.
- W2330711204 cites W2103820944 @default.
- W2330711204 cites W2107023258 @default.
- W2330711204 cites W2112301665 @default.
- W2330711204 cites W2121947440 @default.
- W2330711204 cites W2122815436 @default.
- W2330711204 cites W2133916729 @default.
- W2330711204 cites W2141734555 @default.
- W2330711204 cites W2143516773 @default.
- W2330711204 cites W2149887512 @default.
- W2330711204 cites W2160662337 @default.
- W2330711204 cites W2163112044 @default.
- W2330711204 cites W2171896402 @default.
- W2330711204 cites W2963809831 @default.
- W2330711204 doi "https://doi.org/10.1109/tgrs.2016.2514508" @default.
- W2330711204 hasPublicationYear "2016" @default.
- W2330711204 type Work @default.
- W2330711204 sameAs 2330711204 @default.
- W2330711204 citedByCount "77" @default.
- W2330711204 countsByYear W23307112042016 @default.
- W2330711204 countsByYear W23307112042017 @default.
- W2330711204 countsByYear W23307112042018 @default.
- W2330711204 countsByYear W23307112042019 @default.
- W2330711204 countsByYear W23307112042020 @default.
- W2330711204 countsByYear W23307112042021 @default.
- W2330711204 countsByYear W23307112042022 @default.
- W2330711204 countsByYear W23307112042023 @default.
- W2330711204 crossrefType "journal-article" @default.
- W2330711204 hasAuthorship W2330711204A5003378750 @default.
- W2330711204 hasAuthorship W2330711204A5015366653 @default.
- W2330711204 hasAuthorship W2330711204A5027313468 @default.
- W2330711204 hasAuthorship W2330711204A5034411238 @default.
- W2330711204 hasAuthorship W2330711204A5039348214 @default.
- W2330711204 hasAuthorship W2330711204A5040607477 @default.
- W2330711204 hasAuthorship W2330711204A5044278476 @default.
- W2330711204 hasAuthorship W2330711204A5089171585 @default.
- W2330711204 hasConcept C131979681 @default.
- W2330711204 hasConcept C138885662 @default.
- W2330711204 hasConcept C153180895 @default.
- W2330711204 hasConcept C154945302 @default.
- W2330711204 hasConcept C171686336 @default.
- W2330711204 hasConcept C2776401178 @default.
- W2330711204 hasConcept C41008148 @default.
- W2330711204 hasConcept C41895202 @default.
- W2330711204 hasConcept C500882744 @default.
- W2330711204 hasConcept C97931131 @default.
- W2330711204 hasConceptScore W2330711204C131979681 @default.
- W2330711204 hasConceptScore W2330711204C138885662 @default.
- W2330711204 hasConceptScore W2330711204C153180895 @default.
- W2330711204 hasConceptScore W2330711204C154945302 @default.
- W2330711204 hasConceptScore W2330711204C171686336 @default.
- W2330711204 hasConceptScore W2330711204C2776401178 @default.
- W2330711204 hasConceptScore W2330711204C41008148 @default.
- W2330711204 hasConceptScore W2330711204C41895202 @default.
- W2330711204 hasConceptScore W2330711204C500882744 @default.
- W2330711204 hasConceptScore W2330711204C97931131 @default.
- W2330711204 hasFunder F4320321001 @default.
- W2330711204 hasIssue "6" @default.
- W2330711204 hasLocation W23307112041 @default.
- W2330711204 hasOpenAccess W2330711204 @default.
- W2330711204 hasPrimaryLocation W23307112041 @default.