Matches in SemOpenAlex for { <https://semopenalex.org/work/W2330739924> ?p ?o ?g. }
- W2330739924 endingPage "3283" @default.
- W2330739924 startingPage "3275" @default.
- W2330739924 abstract "ConspectusNot only is hydrogen critical for current chemical and refining processes, it is also projected to be an important energy carrier for future green energy systems such as fuel cell vehicles. Scientists have examined light metal hydrides for this purpose, which need to have both good thermodynamic properties and fast charging/discharging kinetics. The properties of hydrogen in metals are also important in the development of membranes for hydrogen purification. In this Account, we highlight our recent work aimed at the large scale screening of metal-based systems with either favorable hydrogen capacities and thermodynamics for hydrogen storage in metal hydrides for use in onboard fuel cell vehicles or promising hydrogen permeabilities relative to pure Pd for hydrogen separation from high temperature mixed gas streams using dense metal membranes.Previously, chemists have found that the metal hydrides need to hit a stability sweet spot: if the compound is too stable, it will not release enough hydrogen under low temperatures; if the compound is too unstable, the reaction may not be reversible under practical conditions. Fortunately, we can use DFT-based methods to assess this stability via prediction of thermodynamic properties, equilibrium reaction pathways, and phase diagrams for candidate metal hydride systems with reasonable accuracy using only proposed crystal structures and compositions as inputs. We have efficiently screened millions of mixtures of pure metals, metal hydrides, and alloys to identify promising reaction schemes via the grand canonical linear programming method.Pure Pd and Pd-based membranes have ideal hydrogen selectivities over other gases but suffer shortcomings such as sensitivity to sulfur poisoning and hydrogen embrittlement. Using a combination of detailed DFT, Monte Carlo techniques, and simplified models, we are able to accurately predict hydrogen permeabilities of metal membranes and screen large libraries of candidate alloys, selections of which are described in this Account. To further increase the number of membrane materials that can be studied with DFT, computational costs need to be reduced either through methods development to break bottlenecks in the performance prediction algorithm, particularly related to transition state identification, or through screening techniques that take advantage of correlations to bypass constraints." @default.
- W2330739924 created "2016-06-24" @default.
- W2330739924 creator A5031523641 @default.
- W2330739924 creator A5034321018 @default.
- W2330739924 creator A5061646819 @default.
- W2330739924 date "2014-06-17" @default.
- W2330739924 modified "2023-09-25" @default.
- W2330739924 title "Powered by DFT: Screening Methods That Accelerate Materials Development for Hydrogen in Metals Applications" @default.
- W2330739924 cites W1627630677 @default.
- W2330739924 cites W1968185192 @default.
- W2330739924 cites W1968927688 @default.
- W2330739924 cites W1969228495 @default.
- W2330739924 cites W1976058233 @default.
- W2330739924 cites W1979137103 @default.
- W2330739924 cites W1980914690 @default.
- W2330739924 cites W1987717524 @default.
- W2330739924 cites W1991633129 @default.
- W2330739924 cites W1992305090 @default.
- W2330739924 cites W1992431232 @default.
- W2330739924 cites W1992985800 @default.
- W2330739924 cites W1994727991 @default.
- W2330739924 cites W1995971836 @default.
- W2330739924 cites W2000304254 @default.
- W2330739924 cites W2003929858 @default.
- W2330739924 cites W2007850723 @default.
- W2330739924 cites W2013117015 @default.
- W2330739924 cites W2015197254 @default.
- W2330739924 cites W2021430529 @default.
- W2330739924 cites W2025092368 @default.
- W2330739924 cites W2027765106 @default.
- W2330739924 cites W2029722242 @default.
- W2330739924 cites W2030714126 @default.
- W2330739924 cites W2038770888 @default.
- W2330739924 cites W2039293576 @default.
- W2330739924 cites W2040017876 @default.
- W2330739924 cites W2043192670 @default.
- W2330739924 cites W2056768498 @default.
- W2330739924 cites W2060554630 @default.
- W2330739924 cites W2065115495 @default.
- W2330739924 cites W2067072599 @default.
- W2330739924 cites W2067426386 @default.
- W2330739924 cites W2068027998 @default.
- W2330739924 cites W2072104692 @default.
- W2330739924 cites W2086038546 @default.
- W2330739924 cites W2089998798 @default.
- W2330739924 cites W2092168338 @default.
- W2330739924 cites W2134329894 @default.
- W2330739924 cites W2134720098 @default.
- W2330739924 cites W2146600796 @default.
- W2330739924 cites W2314930361 @default.
- W2330739924 cites W2325071684 @default.
- W2330739924 cites W2334404604 @default.
- W2330739924 cites W3158450924 @default.
- W2330739924 doi "https://doi.org/10.1021/ar500018b" @default.
- W2330739924 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24937509" @default.
- W2330739924 hasPublicationYear "2014" @default.
- W2330739924 type Work @default.
- W2330739924 sameAs 2330739924 @default.
- W2330739924 citedByCount "14" @default.
- W2330739924 countsByYear W23307399242014 @default.
- W2330739924 countsByYear W23307399242015 @default.
- W2330739924 countsByYear W23307399242016 @default.
- W2330739924 countsByYear W23307399242017 @default.
- W2330739924 countsByYear W23307399242018 @default.
- W2330739924 countsByYear W23307399242019 @default.
- W2330739924 countsByYear W23307399242020 @default.
- W2330739924 crossrefType "journal-article" @default.
- W2330739924 hasAuthorship W2330739924A5031523641 @default.
- W2330739924 hasAuthorship W2330739924A5034321018 @default.
- W2330739924 hasAuthorship W2330739924A5061646819 @default.
- W2330739924 hasConcept C121332964 @default.
- W2330739924 hasConcept C178790620 @default.
- W2330739924 hasConcept C185592680 @default.
- W2330739924 hasConcept C186399102 @default.
- W2330739924 hasConcept C18762648 @default.
- W2330739924 hasConcept C192562407 @default.
- W2330739924 hasConcept C202189072 @default.
- W2330739924 hasConcept C2777961443 @default.
- W2330739924 hasConcept C41625074 @default.
- W2330739924 hasConcept C512968161 @default.
- W2330739924 hasConcept C544153396 @default.
- W2330739924 hasConcept C55493867 @default.
- W2330739924 hasConcept C57171237 @default.
- W2330739924 hasConcept C68044625 @default.
- W2330739924 hasConcept C68170385 @default.
- W2330739924 hasConcept C9682599 @default.
- W2330739924 hasConcept C97355855 @default.
- W2330739924 hasConceptScore W2330739924C121332964 @default.
- W2330739924 hasConceptScore W2330739924C178790620 @default.
- W2330739924 hasConceptScore W2330739924C185592680 @default.
- W2330739924 hasConceptScore W2330739924C186399102 @default.
- W2330739924 hasConceptScore W2330739924C18762648 @default.
- W2330739924 hasConceptScore W2330739924C192562407 @default.
- W2330739924 hasConceptScore W2330739924C202189072 @default.
- W2330739924 hasConceptScore W2330739924C2777961443 @default.
- W2330739924 hasConceptScore W2330739924C41625074 @default.
- W2330739924 hasConceptScore W2330739924C512968161 @default.
- W2330739924 hasConceptScore W2330739924C544153396 @default.