Matches in SemOpenAlex for { <https://semopenalex.org/work/W2331173106> ?p ?o ?g. }
- W2331173106 endingPage "1275" @default.
- W2331173106 startingPage "1263" @default.
- W2331173106 abstract "Reductive electron transfer (ET) to organic compounds is a powerful method for the activation of substrates via the formation of radicals, radical anions, anions, and dianions that can be exploited in bond-cleaving and bond-forming processes. Since its introduction to the synthetic community in 1977 by Kagan, SmI2 has become one of the most important reducing agents available in the laboratory. Despite its widespread application in aldehyde and ketone reduction, it was widely accepted that carboxylic acid derivatives could not be reduced by SmI2; only recently has our work led to this dogma being overturned, and the reduction of carboxylic acid derivatives using SmI2 can now take its place alongside aldehyde/ketone reduction as a powerful activation mode for synthesis. In this Account, we set out our studies of the reduction of carboxylic acid derivatives using SmI2, SmI2-H2O, and SmI2-H2O-NR3 and the exploitation of the unusual radical anions that are now accessible in unprecedented carbon-carbon bond-forming processes. The Account begins with our serendipitous discovery that SmI2 mixed with H2O is able to reduce six-membered lactones to diols, a transformation previously thought to be impossible. After the successful development of selective monoreductions of Meldrum's acid and barbituric acid heterocyclic feedstocks, we then identified the SmI2-H2O-NR3 reagent system for the efficient reduction of a range of acyclic carboxylic acid derivatives that typically present a significant challenge for ET reductants. Mechanistic studies have led us to propose a common mechanism for the reduction of carboxylic acid derivatives using Sm(II), with only subtle changes observed as the carboxylic acid derivative and Sm(II) reagent system are varied. At the center of our postulated mechanism is the proposed reversibility of the first ET to the carbonyl of carboxylic acid derivatives, and this led us to devise several strategies that allow the radical anion intermediates to be exploited productively in efficient new processes. First, we have used internal directing groups in substrates to switch on productive ET to esters and amides and have exploited such an approach in tag-removal cyclization processes that deliver molecular scaffolds of significance in biology and materials science. Second, we have exploited external ligands to facilitate ET to carboxylic acid derivatives and have applied the strategy in telescoped reaction sequences. Finally, we have employed follow-up cyclizations with alkenes, alkynes, and allenes to intercept radical anion intermediates formed along the reaction path and have employed this strategy in complexity-generating cascade approaches to biologically significant molecular architectures. From our studies, it is now clear that Sm(II)-mediated ET to carboxylic acid derivatives constitutes a general strategy for inverting the polarity of the carbonyl, allowing nucleophilic carbon-centered radicals to be formed and exploited in novel chemical processes." @default.
- W2331173106 created "2016-06-24" @default.
- W2331173106 creator A5015064495 @default.
- W2331173106 creator A5040225377 @default.
- W2331173106 date "2015-04-14" @default.
- W2331173106 modified "2023-10-01" @default.
- W2331173106 title "Sm(II)-Mediated Electron Transfer to Carboxylic Acid Derivatives: Development of Complexity-Generating Cascades" @default.
- W2331173106 cites W1966512781 @default.
- W2331173106 cites W1968141353 @default.
- W2331173106 cites W1971023195 @default.
- W2331173106 cites W1971849813 @default.
- W2331173106 cites W1971988873 @default.
- W2331173106 cites W1975496863 @default.
- W2331173106 cites W1980829913 @default.
- W2331173106 cites W1984296351 @default.
- W2331173106 cites W1988942058 @default.
- W2331173106 cites W1993372864 @default.
- W2331173106 cites W1997667290 @default.
- W2331173106 cites W1999139342 @default.
- W2331173106 cites W2004248212 @default.
- W2331173106 cites W2011427928 @default.
- W2331173106 cites W2013280705 @default.
- W2331173106 cites W2016570326 @default.
- W2331173106 cites W2018017856 @default.
- W2331173106 cites W2020053771 @default.
- W2331173106 cites W2022880546 @default.
- W2331173106 cites W2026094502 @default.
- W2331173106 cites W2027517873 @default.
- W2331173106 cites W2031748077 @default.
- W2331173106 cites W2032218899 @default.
- W2331173106 cites W2032423860 @default.
- W2331173106 cites W2048190256 @default.
- W2331173106 cites W2054778254 @default.
- W2331173106 cites W2062855113 @default.
- W2331173106 cites W2068135949 @default.
- W2331173106 cites W2071181513 @default.
- W2331173106 cites W2073763431 @default.
- W2331173106 cites W2075292827 @default.
- W2331173106 cites W2094596026 @default.
- W2331173106 cites W2095277737 @default.
- W2331173106 cites W2099232458 @default.
- W2331173106 cites W2110969796 @default.
- W2331173106 cites W2117829265 @default.
- W2331173106 cites W2122253330 @default.
- W2331173106 cites W2125167767 @default.
- W2331173106 cites W2128562525 @default.
- W2331173106 cites W2129206927 @default.
- W2331173106 cites W2142418172 @default.
- W2331173106 cites W2146444740 @default.
- W2331173106 cites W2156607919 @default.
- W2331173106 cites W2158870267 @default.
- W2331173106 cites W2161185052 @default.
- W2331173106 cites W2168814364 @default.
- W2331173106 cites W2168932255 @default.
- W2331173106 cites W2316023690 @default.
- W2331173106 cites W2316027677 @default.
- W2331173106 cites W2320819664 @default.
- W2331173106 cites W2321196663 @default.
- W2331173106 cites W2321460607 @default.
- W2331173106 cites W2331137441 @default.
- W2331173106 cites W2335360968 @default.
- W2331173106 cites W2950927285 @default.
- W2331173106 cites W2952639395 @default.
- W2331173106 cites W2953350340 @default.
- W2331173106 cites W36384584 @default.
- W2331173106 cites W4230004918 @default.
- W2331173106 doi "https://doi.org/10.1021/acs.accounts.5b00083" @default.
- W2331173106 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25871998" @default.
- W2331173106 hasPublicationYear "2015" @default.
- W2331173106 type Work @default.
- W2331173106 sameAs 2331173106 @default.
- W2331173106 citedByCount "120" @default.
- W2331173106 countsByYear W23311731062015 @default.
- W2331173106 countsByYear W23311731062016 @default.
- W2331173106 countsByYear W23311731062017 @default.
- W2331173106 countsByYear W23311731062018 @default.
- W2331173106 countsByYear W23311731062019 @default.
- W2331173106 countsByYear W23311731062020 @default.
- W2331173106 countsByYear W23311731062021 @default.
- W2331173106 countsByYear W23311731062022 @default.
- W2331173106 countsByYear W23311731062023 @default.
- W2331173106 crossrefType "journal-article" @default.
- W2331173106 hasAuthorship W2331173106A5015064495 @default.
- W2331173106 hasAuthorship W2331173106A5040225377 @default.
- W2331173106 hasConcept C139066938 @default.
- W2331173106 hasConcept C161790260 @default.
- W2331173106 hasConcept C178790620 @default.
- W2331173106 hasConcept C185592680 @default.
- W2331173106 hasConcept C21951064 @default.
- W2331173106 hasConcept C2777738585 @default.
- W2331173106 hasConcept C2779074116 @default.
- W2331173106 hasConcept C2779825165 @default.
- W2331173106 hasConcept C40875361 @default.
- W2331173106 hasConcept C535685238 @default.
- W2331173106 hasConceptScore W2331173106C139066938 @default.
- W2331173106 hasConceptScore W2331173106C161790260 @default.
- W2331173106 hasConceptScore W2331173106C178790620 @default.
- W2331173106 hasConceptScore W2331173106C185592680 @default.