Matches in SemOpenAlex for { <https://semopenalex.org/work/W2331283065> ?p ?o ?g. }
- W2331283065 abstract "The linear mixed effects model (LMM) is widely used in the analysis of clustered or longitudinal data. In the practice of LMM, the inference on the structure of the random effects component is of great importance, not only to yield proper interpretation of subject-specific effects but also to draw valid statistical conclusions. This task of inference becomes significantly challenging when a large number of fixed effects and random effects are involved in the analysis. The difficulty of variable selection arises from the need of simultaneously regularizing both mean model and covariance structures, with possible parameter constraints between the two. In this paper, we propose a novel method of doubly regularized restricted maximum likelihood to select fixed and random effects simultaneously in the LMM. The Cholesky decomposition is invoked to ensure the positive-definiteness of the selected covariance matrix of random effects, and selected random effects are invariant with respect to the ordering of predictors appearing in the Cholesky decomposition. We then develop a new algorithm that solves the related optimization problem effectively, in which the computational cost is comparable with that of the Newton-Raphson algorithm for MLE or REML in the LMM. We also investigate large sample properties for the proposed method, including the oracle property. Both simulation studies and data analysis are included for illustration. Doubly Regularized REML for Estimation and Selection of Fixed and Random Effects in Linear Mixed-Effects Models ∗ Sijian Wang, Peter X.-K. Song and Ji Zhu Abstract The linear mixed effects model (LMM) is widely used in the analysis of clustered or longitudinal data. In the practice of LMM, the inference on the structure of the random effects component is of great importance, not only to yield proper interpretation of subject-specific effects but also to draw valid statistical conclusions. This task of inference becomes significantly challenging when a large number of fixed effects and random effects are involved in the analysis. The difficulty of variable selection arises from the need of simultaneously regularizing both mean model and covariance structures, with possible parameter constraints between the two. In this paper, we propose a novel method of doubly regularized restricted maximum likelihood to select fixed and random effects simultaneously in the LMM. The Cholesky decomposition is invoked to ensure the positive-definiteness of the selected covariance matrix of random effects, and selected random effects are invariant with respect to the ordering of predictors appearing in the Cholesky decomposition. We then develop a new algorithm that solves the related optimization problem effectively, in which the computational cost is comparable with that of the Newton-Raphson algorithm for MLE or REML in the LMM. We also investigate large sample properties for the proposed method, including the oracle property. Both simulation studies and data analysis are included for illustration." @default.
- W2331283065 created "2016-06-24" @default.
- W2331283065 creator A5009718985 @default.
- W2331283065 creator A5035250524 @default.
- W2331283065 creator A5053664657 @default.
- W2331283065 date "2010-01-01" @default.
- W2331283065 modified "2023-09-23" @default.
- W2331283065 title "Doubly Regularized REML for Estimation and Selection of Fixed and Random Effects in Linear Mixed-Effects Models" @default.
- W2331283065 cites W1490768654 @default.
- W2331283065 cites W1982126198 @default.
- W2331283065 cites W1982585616 @default.
- W2331283065 cites W2000367959 @default.
- W2331283065 cites W2007917650 @default.
- W2331283065 cites W2014581807 @default.
- W2331283065 cites W2020925091 @default.
- W2331283065 cites W2035196541 @default.
- W2331283065 cites W2046157589 @default.
- W2331283065 cites W2051448654 @default.
- W2331283065 cites W2052371427 @default.
- W2331283065 cites W2058815839 @default.
- W2331283065 cites W2063605818 @default.
- W2331283065 cites W2063978378 @default.
- W2331283065 cites W2064279221 @default.
- W2331283065 cites W2070094080 @default.
- W2331283065 cites W2074586297 @default.
- W2331283065 cites W2074682976 @default.
- W2331283065 cites W2080726496 @default.
- W2331283065 cites W2081283602 @default.
- W2331283065 cites W2084925598 @default.
- W2331283065 cites W2086205459 @default.
- W2331283065 cites W2100128674 @default.
- W2331283065 cites W2109284646 @default.
- W2331283065 cites W2122759946 @default.
- W2331283065 cites W2135046866 @default.
- W2331283065 cites W2138019504 @default.
- W2331283065 cites W2148487094 @default.
- W2331283065 cites W2168175751 @default.
- W2331283065 cites W2528886072 @default.
- W2331283065 cites W3101391693 @default.
- W2331283065 cites W53592802 @default.
- W2331283065 hasPublicationYear "2010" @default.
- W2331283065 type Work @default.
- W2331283065 sameAs 2331283065 @default.
- W2331283065 citedByCount "2" @default.
- W2331283065 countsByYear W23312830652015 @default.
- W2331283065 crossrefType "journal-article" @default.
- W2331283065 hasAuthorship W2331283065A5009718985 @default.
- W2331283065 hasAuthorship W2331283065A5035250524 @default.
- W2331283065 hasAuthorship W2331283065A5053664657 @default.
- W2331283065 hasConcept C103545067 @default.
- W2331283065 hasConcept C105795698 @default.
- W2331283065 hasConcept C11413529 @default.
- W2331283065 hasConcept C119043178 @default.
- W2331283065 hasConcept C121332964 @default.
- W2331283065 hasConcept C126255220 @default.
- W2331283065 hasConcept C126322002 @default.
- W2331283065 hasConcept C153720581 @default.
- W2331283065 hasConcept C154945302 @default.
- W2331283065 hasConcept C158693339 @default.
- W2331283065 hasConcept C16012445 @default.
- W2331283065 hasConcept C163175372 @default.
- W2331283065 hasConcept C167928553 @default.
- W2331283065 hasConcept C168743327 @default.
- W2331283065 hasConcept C178650346 @default.
- W2331283065 hasConcept C185429906 @default.
- W2331283065 hasConcept C2776214188 @default.
- W2331283065 hasConcept C28826006 @default.
- W2331283065 hasConcept C33923547 @default.
- W2331283065 hasConcept C34727166 @default.
- W2331283065 hasConcept C41008148 @default.
- W2331283065 hasConcept C61420037 @default.
- W2331283065 hasConcept C62520636 @default.
- W2331283065 hasConcept C71924100 @default.
- W2331283065 hasConcept C81917197 @default.
- W2331283065 hasConcept C93959086 @default.
- W2331283065 hasConcept C95190672 @default.
- W2331283065 hasConceptScore W2331283065C103545067 @default.
- W2331283065 hasConceptScore W2331283065C105795698 @default.
- W2331283065 hasConceptScore W2331283065C11413529 @default.
- W2331283065 hasConceptScore W2331283065C119043178 @default.
- W2331283065 hasConceptScore W2331283065C121332964 @default.
- W2331283065 hasConceptScore W2331283065C126255220 @default.
- W2331283065 hasConceptScore W2331283065C126322002 @default.
- W2331283065 hasConceptScore W2331283065C153720581 @default.
- W2331283065 hasConceptScore W2331283065C154945302 @default.
- W2331283065 hasConceptScore W2331283065C158693339 @default.
- W2331283065 hasConceptScore W2331283065C16012445 @default.
- W2331283065 hasConceptScore W2331283065C163175372 @default.
- W2331283065 hasConceptScore W2331283065C167928553 @default.
- W2331283065 hasConceptScore W2331283065C168743327 @default.
- W2331283065 hasConceptScore W2331283065C178650346 @default.
- W2331283065 hasConceptScore W2331283065C185429906 @default.
- W2331283065 hasConceptScore W2331283065C2776214188 @default.
- W2331283065 hasConceptScore W2331283065C28826006 @default.
- W2331283065 hasConceptScore W2331283065C33923547 @default.
- W2331283065 hasConceptScore W2331283065C34727166 @default.
- W2331283065 hasConceptScore W2331283065C41008148 @default.
- W2331283065 hasConceptScore W2331283065C61420037 @default.
- W2331283065 hasConceptScore W2331283065C62520636 @default.
- W2331283065 hasConceptScore W2331283065C71924100 @default.