Matches in SemOpenAlex for { <https://semopenalex.org/work/W2331918145> ?p ?o ?g. }
- W2331918145 endingPage "2097" @default.
- W2331918145 startingPage "2085" @default.
- W2331918145 abstract "In the recent MRI scanning, ultra-high-field (7T) MR imaging provides higher resolution and better tissue contrast compared to routine 3T MRI, which may help in more accurate and early brain diseases diagnosis. However, currently, 7T MRI scanners are more expensive and less available at clinical and research centers. These motivate us to propose a method for the reconstruction of images close to the quality of 7T MRI, called 7T-like images, from 3T MRI, to improve the quality in terms of resolution and contrast. By doing so, the post-processing tasks, such as tissue segmentation, can be done more accurately and brain tissues details can be seen with higher resolution and contrast. To do this, we have acquired a unique dataset which includes paired 3T and 7T images scanned from same subjects, and then propose a hierarchical reconstruction based on group sparsity in a novel multi-level Canonical Correlation Analysis (CCA) space, to improve the quality of 3T MR image to be 7T-like MRI. First, overlapping patches are extracted from the input 3T MR image. Then, by extracting the most similar patches from all the aligned 3T and 7T images in the training set, the paired 3T and 7T dictionaries are constructed for each patch. It is worth noting that, for the training, we use pairs of 3T and 7T MR images from each training subject. Then, we propose multi-level CCA to map the paired 3T and 7T patch sets to a common space to increase their correlations. In such space, each input 3T MRI patch is sparsely represented by the 3T dictionary and then the obtained sparse coefficients are used together with the corresponding 7T dictionary to reconstruct the 7T-like patch. Also, to have the structural consistency between adjacent patches, the group sparsity is employed. This reconstruction is performed with changing patch sizes in a hierarchical framework. Experiments have been done using 13 subjects with both 3T and 7T MR images. The results show that our method outperforms previous methods and is able to recover better structural details. Also, to place our proposed method in a medical application context, we evaluated the influence of post-processing methods such as brain tissue segmentation on the reconstructed 7T-like MR images. Results show that our 7T-like images lead to higher accuracy in segmentation of white matter (WM), gray matter (GM), cerebrospinal fluid (CSF), and skull, compared to segmentation of 3T MR images." @default.
- W2331918145 created "2016-06-24" @default.
- W2331918145 creator A5000937401 @default.
- W2331918145 creator A5043300451 @default.
- W2331918145 creator A5044868467 @default.
- W2331918145 creator A5052040538 @default.
- W2331918145 creator A5054371643 @default.
- W2331918145 creator A5059535270 @default.
- W2331918145 date "2016-09-01" @default.
- W2331918145 modified "2023-10-16" @default.
- W2331918145 title "Reconstruction of 7T-Like Images From 3T MRI" @default.
- W2331918145 cites W1502698477 @default.
- W2331918145 cites W1949599440 @default.
- W2331918145 cites W1981047752 @default.
- W2331918145 cites W1983060851 @default.
- W2331918145 cites W1989704934 @default.
- W2331918145 cites W1992408872 @default.
- W2331918145 cites W1999457380 @default.
- W2331918145 cites W2005503451 @default.
- W2331918145 cites W2010430323 @default.
- W2331918145 cites W2011481459 @default.
- W2331918145 cites W2011952414 @default.
- W2331918145 cites W2015497428 @default.
- W2331918145 cites W2015897296 @default.
- W2331918145 cites W2017429172 @default.
- W2331918145 cites W2023253889 @default.
- W2331918145 cites W2030480732 @default.
- W2331918145 cites W2036879854 @default.
- W2331918145 cites W2039539938 @default.
- W2331918145 cites W2046933782 @default.
- W2331918145 cites W2051738325 @default.
- W2331918145 cites W2055491692 @default.
- W2331918145 cites W2057015512 @default.
- W2331918145 cites W2057065563 @default.
- W2331918145 cites W2067625321 @default.
- W2331918145 cites W2088254198 @default.
- W2331918145 cites W2092245015 @default.
- W2331918145 cites W2097074225 @default.
- W2331918145 cites W2103844245 @default.
- W2331918145 cites W2115110620 @default.
- W2331918145 cites W2121058967 @default.
- W2331918145 cites W2124438045 @default.
- W2331918145 cites W2134584543 @default.
- W2331918145 cites W2137290314 @default.
- W2331918145 cites W2143233814 @default.
- W2331918145 cites W2149669120 @default.
- W2331918145 cites W2157466038 @default.
- W2331918145 cites W2164551808 @default.
- W2331918145 cites W2187351272 @default.
- W2331918145 cites W2208340121 @default.
- W2331918145 cites W2282892678 @default.
- W2331918145 cites W2292976057 @default.
- W2331918145 cites W2437838797 @default.
- W2331918145 cites W2545025984 @default.
- W2331918145 cites W3104720471 @default.
- W2331918145 cites W4230920194 @default.
- W2331918145 doi "https://doi.org/10.1109/tmi.2016.2549918" @default.
- W2331918145 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5147737" @default.
- W2331918145 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27046894" @default.
- W2331918145 hasPublicationYear "2016" @default.
- W2331918145 type Work @default.
- W2331918145 sameAs 2331918145 @default.
- W2331918145 citedByCount "63" @default.
- W2331918145 countsByYear W23319181452016 @default.
- W2331918145 countsByYear W23319181452017 @default.
- W2331918145 countsByYear W23319181452018 @default.
- W2331918145 countsByYear W23319181452019 @default.
- W2331918145 countsByYear W23319181452020 @default.
- W2331918145 countsByYear W23319181452021 @default.
- W2331918145 countsByYear W23319181452022 @default.
- W2331918145 countsByYear W23319181452023 @default.
- W2331918145 crossrefType "journal-article" @default.
- W2331918145 hasAuthorship W2331918145A5000937401 @default.
- W2331918145 hasAuthorship W2331918145A5043300451 @default.
- W2331918145 hasAuthorship W2331918145A5044868467 @default.
- W2331918145 hasAuthorship W2331918145A5052040538 @default.
- W2331918145 hasAuthorship W2331918145A5054371643 @default.
- W2331918145 hasAuthorship W2331918145A5059535270 @default.
- W2331918145 hasBestOaLocation W23319181452 @default.
- W2331918145 hasConcept C115961682 @default.
- W2331918145 hasConcept C124504099 @default.
- W2331918145 hasConcept C126838900 @default.
- W2331918145 hasConcept C141379421 @default.
- W2331918145 hasConcept C143409427 @default.
- W2331918145 hasConcept C153180895 @default.
- W2331918145 hasConcept C154945302 @default.
- W2331918145 hasConcept C177264268 @default.
- W2331918145 hasConcept C199360897 @default.
- W2331918145 hasConcept C205372480 @default.
- W2331918145 hasConcept C2776502983 @default.
- W2331918145 hasConcept C31972630 @default.
- W2331918145 hasConcept C41008148 @default.
- W2331918145 hasConcept C55020928 @default.
- W2331918145 hasConcept C71924100 @default.
- W2331918145 hasConcept C89600930 @default.
- W2331918145 hasConceptScore W2331918145C115961682 @default.
- W2331918145 hasConceptScore W2331918145C124504099 @default.
- W2331918145 hasConceptScore W2331918145C126838900 @default.