Matches in SemOpenAlex for { <https://semopenalex.org/work/W2332215589> ?p ?o ?g. }
- W2332215589 endingPage "888" @default.
- W2332215589 startingPage "876" @default.
- W2332215589 abstract "Concentrations of H2O, F, Cl, C, P, and S have been measured by secondary ion mass spectrometry (SIMS) in experimentally produced peridotite phases (including clinopyroxene, orthopyroxene, olivine, garnet, amphibole, and mica) and coexisting basanitic glasses. Because only two experiments produced glasses on quenching (with the melt phase in others reverting to felt-like crystallite masses) H2O concentrations in melts were also separately determined from mass-balance relationships and by assuming constant H2O/La in melts and starting materials. The resulting values were used to calculate mineral/melt partition coefficients (D values) for H2O [where DH2Ocrystal/melt = (mass fraction of H2O in crystal)/(mass fraction of H2O in melt)] for conditions of 1025–1190 °C and 1.0–3.5 GPa. These gave 0.0064–0.0164 for clinopyroxene, 0.0046–0.0142 for orthopyroxene, 0.0015–0.0016 for olivine, and 0.0016–0.0022 for garnet. Although less information was obtained for the other volatiles, F was found to be significantly more compatible than H2O during peridotite melting, whereas Cl is significantly less compatible. S also has small but appreciable solubilities in amphiboles and micas, but not in pyroxenes or olivine. The solubility of C in silicate minerals appears to be negligible, although C was present in coexisting melts (~0.5 wt% as CO2) and as residual graphite during experiments. The D values for H2O in clinopyroxene and orthopyroxene are positively correlated with ivAl but negatively correlated with the H2O concentrations of melts (when considered as wt%). These relationships are consistent with the broad trends of previously published partitioning data. Although some of the concentration dependence can be related to cross-correlation between ivAl in pyroxenes and H2O concentrations in melts (via the latter’s control of liquidus temperatures) this relationship is too inconsistent to be a complete explanation. A concentration dependence for DH2Omineral/melt can also be independently predicted from speciation models for H2O in silicate melts. Thus it is likely that DH2Opyx/melt is influenced by both ivAl and the absolute concentration of H2O in melts. DH2O/DCe for clinopyroxene is inversely correlated with M2 site radii. Because the latter decrease with increasing pressure and temperature, relatively hot and/or deeply derived melts should be enriched in Ce relative to H2O when compared to melts from cooler and shallower mantle sources. Conversely, melts from H2O-rich settings (e.g., subduction zones) should have higher H2O/Ce than their source rocks. When combined with previously obtained partitioning data for non-volatile elements (from the same experiments), our data are consistent with the enrichment of intraplate basalt sources in both volatile and non-volatile incompatible elements by small-degree melts derived from local mid-ocean ridge basalt sources. In this way, volatiles can be seen to play an active role (via their promotion of partial-melting and metasomatic processes) in the auto-regulation of incompatible element concentrations in the depleted upper mantle." @default.
- W2332215589 created "2016-06-24" @default.
- W2332215589 creator A5015845683 @default.
- W2332215589 creator A5058429193 @default.
- W2332215589 creator A5071848151 @default.
- W2332215589 creator A5086999385 @default.
- W2332215589 date "2016-04-01" @default.
- W2332215589 modified "2023-10-12" @default.
- W2332215589 title "Crystal/melt partitioning of water and other volatiles during the near-solidus melting of mantle peridotite: Comparisons with non-volatile incompatible elements and implications for the generation of intraplate magmatism" @default.
- W2332215589 cites W1589731764 @default.
- W2332215589 cites W1606315503 @default.
- W2332215589 cites W178605325 @default.
- W2332215589 cites W1966395795 @default.
- W2332215589 cites W1971534127 @default.
- W2332215589 cites W1986993012 @default.
- W2332215589 cites W1988659605 @default.
- W2332215589 cites W1996000677 @default.
- W2332215589 cites W1998709443 @default.
- W2332215589 cites W2008782416 @default.
- W2332215589 cites W2008901261 @default.
- W2332215589 cites W2011607179 @default.
- W2332215589 cites W2017983687 @default.
- W2332215589 cites W2019742135 @default.
- W2332215589 cites W2022364310 @default.
- W2332215589 cites W2024702090 @default.
- W2332215589 cites W2025598059 @default.
- W2332215589 cites W2025809592 @default.
- W2332215589 cites W2027268081 @default.
- W2332215589 cites W2030751481 @default.
- W2332215589 cites W2032288868 @default.
- W2332215589 cites W2035283420 @default.
- W2332215589 cites W2036918177 @default.
- W2332215589 cites W2040120198 @default.
- W2332215589 cites W2044027794 @default.
- W2332215589 cites W2049203552 @default.
- W2332215589 cites W2049454394 @default.
- W2332215589 cites W2049693080 @default.
- W2332215589 cites W2053410779 @default.
- W2332215589 cites W2055859870 @default.
- W2332215589 cites W2056020487 @default.
- W2332215589 cites W2059539080 @default.
- W2332215589 cites W2060194222 @default.
- W2332215589 cites W2064800247 @default.
- W2332215589 cites W2065110050 @default.
- W2332215589 cites W2067336738 @default.
- W2332215589 cites W2071324209 @default.
- W2332215589 cites W2071583796 @default.
- W2332215589 cites W2072632001 @default.
- W2332215589 cites W2076679286 @default.
- W2332215589 cites W2077577717 @default.
- W2332215589 cites W2079384032 @default.
- W2332215589 cites W2080629343 @default.
- W2332215589 cites W2081251458 @default.
- W2332215589 cites W2081705179 @default.
- W2332215589 cites W2083215688 @default.
- W2332215589 cites W2083569297 @default.
- W2332215589 cites W2085788439 @default.
- W2332215589 cites W2088773135 @default.
- W2332215589 cites W2091854642 @default.
- W2332215589 cites W2092338522 @default.
- W2332215589 cites W2093854966 @default.
- W2332215589 cites W2096646144 @default.
- W2332215589 cites W2097776277 @default.
- W2332215589 cites W2109196725 @default.
- W2332215589 cites W2109934328 @default.
- W2332215589 cites W2112503764 @default.
- W2332215589 cites W2117033956 @default.
- W2332215589 cites W2119614736 @default.
- W2332215589 cites W2124640887 @default.
- W2332215589 cites W2125654971 @default.
- W2332215589 cites W2127888210 @default.
- W2332215589 cites W2137973240 @default.
- W2332215589 cites W2139737137 @default.
- W2332215589 cites W2140616917 @default.
- W2332215589 cites W2144460239 @default.
- W2332215589 cites W2153846210 @default.
- W2332215589 cites W2167590372 @default.
- W2332215589 cites W2297400752 @default.
- W2332215589 cites W2328505494 @default.
- W2332215589 cites W2329221777 @default.
- W2332215589 cites W2389701078 @default.
- W2332215589 cites W2467510956 @default.
- W2332215589 cites W2581773187 @default.
- W2332215589 cites W2597110531 @default.
- W2332215589 cites W2735451626 @default.
- W2332215589 cites W3093468725 @default.
- W2332215589 cites W3124952294 @default.
- W2332215589 cites W3185674536 @default.
- W2332215589 cites W593013685 @default.
- W2332215589 doi "https://doi.org/10.2138/am-2016-5437" @default.
- W2332215589 hasPublicationYear "2016" @default.
- W2332215589 type Work @default.
- W2332215589 sameAs 2332215589 @default.
- W2332215589 citedByCount "19" @default.
- W2332215589 countsByYear W23322155892017 @default.
- W2332215589 countsByYear W23322155892018 @default.
- W2332215589 countsByYear W23322155892019 @default.
- W2332215589 countsByYear W23322155892020 @default.