Matches in SemOpenAlex for { <https://semopenalex.org/work/W2332216340> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2332216340 endingPage "631" @default.
- W2332216340 startingPage "631" @default.
- W2332216340 abstract "In order to apply our rather deep understanding of the structure of Lie groups to the study of transformation groups it is natural to try to single out a class of transformation groups which are in some sense naturally Lie groups. In this paper we iiltroduce such a class and commence their study. In Section 1 the inotioni of a l,ie transformation group is introduced. Roughly, these are grouips II of homeomorphismlls of a space X which admit a Lie group) topology which is stronlg enough to make the evaluation mapping (ht, x) ->h (x) of II X X into X continuous, yet weak enough so that H gets all the onie-parameter subgroups it deserves by virtue of the way it acts on X (see the definiition of admissibly weak below). Such a topology is uniquely determined if it exists and our efforts are in the main concerned with the questioni of wheni it exists anid how onie may effectively put one's hands on it wlheil it does. A niatural candidate for this so-called Lie topology is of course the compact-open topology for H. However, if one considers the example of a dense one-parameter subgroup H of the torus X acting on X by translation, it appears that this is not the general answer. In this example if we modifyv the compact-open topology by adding to the open sets all their arc componlents (getting in this way what we call the modified compact-open topology), we get the Lie topology of HI. That this is a fairly general fact is onie of our maini results (Theorem 5. 14). The latter theorem moreover shows that the reason that the compact-open topology was not good enough in the above example is connected with the fact that H was not closed in the group of all homeomorphisms of X, relative to the compact-open topology. Theorem 5. 14 also states that for a large class of interestinig cases the weakness condition for a Lie topology is redundant. The remainder of the paper is concerned with developing a certain criterion for deciding when a topological group is a Lie group and applying this criterion to derive a general necessary and sufficient conldition for groups of homeomorphisms of locally compact, locally connected finite dimensional metric spaces to be Lie transformiiation grouips. The criterion is remarkable in that local compactness is niot one of the assumptions. It states in fact" @default.
- W2332216340 created "2016-06-24" @default.
- W2332216340 creator A5011356890 @default.
- W2332216340 creator A5057918239 @default.
- W2332216340 date "1957-07-01" @default.
- W2332216340 modified "2023-09-23" @default.
- W2332216340 title "On a Class of Transformation Groups" @default.
- W2332216340 cites W1500527815 @default.
- W2332216340 cites W1970659463 @default.
- W2332216340 cites W2012588304 @default.
- W2332216340 cites W2013081296 @default.
- W2332216340 cites W2323819116 @default.
- W2332216340 doi "https://doi.org/10.2307/2372567" @default.
- W2332216340 hasPublicationYear "1957" @default.
- W2332216340 type Work @default.
- W2332216340 sameAs 2332216340 @default.
- W2332216340 citedByCount "59" @default.
- W2332216340 countsByYear W23322163402012 @default.
- W2332216340 countsByYear W23322163402013 @default.
- W2332216340 countsByYear W23322163402014 @default.
- W2332216340 countsByYear W23322163402015 @default.
- W2332216340 countsByYear W23322163402017 @default.
- W2332216340 countsByYear W23322163402018 @default.
- W2332216340 countsByYear W23322163402019 @default.
- W2332216340 crossrefType "journal-article" @default.
- W2332216340 hasAuthorship W2332216340A5011356890 @default.
- W2332216340 hasAuthorship W2332216340A5057918239 @default.
- W2332216340 hasConcept C104317684 @default.
- W2332216340 hasConcept C136119220 @default.
- W2332216340 hasConcept C154945302 @default.
- W2332216340 hasConcept C185592680 @default.
- W2332216340 hasConcept C202444582 @default.
- W2332216340 hasConcept C204241405 @default.
- W2332216340 hasConcept C2777212361 @default.
- W2332216340 hasConcept C2993626508 @default.
- W2332216340 hasConcept C33923547 @default.
- W2332216340 hasConcept C41008148 @default.
- W2332216340 hasConcept C55493867 @default.
- W2332216340 hasConceptScore W2332216340C104317684 @default.
- W2332216340 hasConceptScore W2332216340C136119220 @default.
- W2332216340 hasConceptScore W2332216340C154945302 @default.
- W2332216340 hasConceptScore W2332216340C185592680 @default.
- W2332216340 hasConceptScore W2332216340C202444582 @default.
- W2332216340 hasConceptScore W2332216340C204241405 @default.
- W2332216340 hasConceptScore W2332216340C2777212361 @default.
- W2332216340 hasConceptScore W2332216340C2993626508 @default.
- W2332216340 hasConceptScore W2332216340C33923547 @default.
- W2332216340 hasConceptScore W2332216340C41008148 @default.
- W2332216340 hasConceptScore W2332216340C55493867 @default.
- W2332216340 hasIssue "3" @default.
- W2332216340 hasLocation W23322163401 @default.
- W2332216340 hasOpenAccess W2332216340 @default.
- W2332216340 hasPrimaryLocation W23322163401 @default.
- W2332216340 hasRelatedWork W1560139384 @default.
- W2332216340 hasRelatedWork W1985218657 @default.
- W2332216340 hasRelatedWork W2007735529 @default.
- W2332216340 hasRelatedWork W2027233917 @default.
- W2332216340 hasRelatedWork W2062274034 @default.
- W2332216340 hasRelatedWork W2096753949 @default.
- W2332216340 hasRelatedWork W2357111437 @default.
- W2332216340 hasRelatedWork W2360944041 @default.
- W2332216340 hasRelatedWork W4249580765 @default.
- W2332216340 hasRelatedWork W4312045658 @default.
- W2332216340 hasVolume "79" @default.
- W2332216340 isParatext "false" @default.
- W2332216340 isRetracted "false" @default.
- W2332216340 magId "2332216340" @default.
- W2332216340 workType "article" @default.