Matches in SemOpenAlex for { <https://semopenalex.org/work/W2332242611> ?p ?o ?g. }
- W2332242611 abstract "An outstanding and fundamental problem in contemporary physics is to include and probe the many-body effect in the study of relativistic quantum manifestations of classical chaos. We address this problem using graphene systems described by the Hubbard Hamiltonian in the setting of resonant tunneling. Such a system consists of two symmetric potential wells separated by a potential barrier, and the geometric shape of the whole domain can be chosen to generate integrable or chaotic dynamics in the classical limit. Employing a standard mean-field approach to calculating a large number of eigenenergies and eigenstates, we uncover a class of localized states with near-zero tunneling in the integrable systems. These states are not the edge states typically seen in graphene systems, and as such they are the consequence of many-body interactions. The physical origin of the non-edge-state type of localized states can be understood by the one-dimensional relativistic quantum tunneling dynamics through the solutions of the Dirac equation with appropriate boundary conditions. We demonstrate that, when the geometry of the system is modified to one with chaos, the localized states are effectively removed, implying that in realistic situations where many-body interactions are present, classical chaos is capable of facilitating greatly quantum tunneling. This result, besides its fundamental importance, can be useful for the development of nanoscale devices such as graphene-based resonant-tunneling diodes." @default.
- W2332242611 created "2016-06-24" @default.
- W2332242611 creator A5027999549 @default.
- W2332242611 creator A5029500481 @default.
- W2332242611 creator A5046036796 @default.
- W2332242611 creator A5087684911 @default.
- W2332242611 date "2014-12-16" @default.
- W2332242611 modified "2023-10-18" @default.
- W2332242611 title "Quantum chaotic tunneling in graphene systems with electron-electron interactions" @default.
- W2332242611 cites W1485398220 @default.
- W2332242611 cites W1491016379 @default.
- W2332242611 cites W1553535237 @default.
- W2332242611 cites W1671921975 @default.
- W2332242611 cites W1677099425 @default.
- W2332242611 cites W1806543486 @default.
- W2332242611 cites W1964700675 @default.
- W2332242611 cites W1968625614 @default.
- W2332242611 cites W1968833963 @default.
- W2332242611 cites W1968937617 @default.
- W2332242611 cites W1970875473 @default.
- W2332242611 cites W1971661108 @default.
- W2332242611 cites W1975018902 @default.
- W2332242611 cites W1975631457 @default.
- W2332242611 cites W1983467746 @default.
- W2332242611 cites W1984222485 @default.
- W2332242611 cites W1984597171 @default.
- W2332242611 cites W1984659995 @default.
- W2332242611 cites W1985138568 @default.
- W2332242611 cites W1986561761 @default.
- W2332242611 cites W1988575969 @default.
- W2332242611 cites W1992925440 @default.
- W2332242611 cites W1994173492 @default.
- W2332242611 cites W1994302781 @default.
- W2332242611 cites W1998288323 @default.
- W2332242611 cites W2001835609 @default.
- W2332242611 cites W2002772433 @default.
- W2332242611 cites W2007081559 @default.
- W2332242611 cites W2007181607 @default.
- W2332242611 cites W2013372920 @default.
- W2332242611 cites W2017212679 @default.
- W2332242611 cites W2020891010 @default.
- W2332242611 cites W2029991306 @default.
- W2332242611 cites W2033341348 @default.
- W2332242611 cites W2033931082 @default.
- W2332242611 cites W2036534002 @default.
- W2332242611 cites W2036659875 @default.
- W2332242611 cites W2038697346 @default.
- W2332242611 cites W2038743587 @default.
- W2332242611 cites W2041596672 @default.
- W2332242611 cites W2041715440 @default.
- W2332242611 cites W2045616800 @default.
- W2332242611 cites W2045805919 @default.
- W2332242611 cites W2046046747 @default.
- W2332242611 cites W2049073117 @default.
- W2332242611 cites W2051423852 @default.
- W2332242611 cites W2051972870 @default.
- W2332242611 cites W2053816845 @default.
- W2332242611 cites W2054890828 @default.
- W2332242611 cites W2056703250 @default.
- W2332242611 cites W2057265008 @default.
- W2332242611 cites W2057936436 @default.
- W2332242611 cites W2058122340 @default.
- W2332242611 cites W2058194437 @default.
- W2332242611 cites W2061448795 @default.
- W2332242611 cites W2062488993 @default.
- W2332242611 cites W2066483887 @default.
- W2332242611 cites W2068058438 @default.
- W2332242611 cites W2069572572 @default.
- W2332242611 cites W2073333918 @default.
- W2332242611 cites W2078473459 @default.
- W2332242611 cites W2083538437 @default.
- W2332242611 cites W2084097402 @default.
- W2332242611 cites W2084496036 @default.
- W2332242611 cites W2086277987 @default.
- W2332242611 cites W2087322555 @default.
- W2332242611 cites W2090008309 @default.
- W2332242611 cites W2091788075 @default.
- W2332242611 cites W2092215630 @default.
- W2332242611 cites W2098814192 @default.
- W2332242611 cites W2101112255 @default.
- W2332242611 cites W2105351049 @default.
- W2332242611 cites W2105685140 @default.
- W2332242611 cites W2107369835 @default.
- W2332242611 cites W2118492507 @default.
- W2332242611 cites W2121772044 @default.
- W2332242611 cites W2125284466 @default.
- W2332242611 cites W2141260394 @default.
- W2332242611 cites W2145667305 @default.
- W2332242611 cites W2146061884 @default.
- W2332242611 cites W2147050575 @default.
- W2332242611 cites W2170068899 @default.
- W2332242611 cites W2313480557 @default.
- W2332242611 cites W2319669707 @default.
- W2332242611 cites W2332755486 @default.
- W2332242611 cites W3098478483 @default.
- W2332242611 cites W4232454247 @default.
- W2332242611 cites W4250697941 @default.
- W2332242611 cites W4256733034 @default.
- W2332242611 cites W4361867059 @default.
- W2332242611 doi "https://doi.org/10.1103/physrevb.90.224301" @default.