Matches in SemOpenAlex for { <https://semopenalex.org/work/W2332355906> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2332355906 abstract "Event Abstract Back to Event Computational investigations of small-worlds networks in neuronal populations Antonio G. Zippo1*, Giuliana Gelsomino1, Sara Nencini1, Gian Carlo Caramenti2, Maurizio Valente1 and Gabriele E. Biella1 1 National Research Council, Institute of Molecular Bioimaging and Physiology, Italy 2 National Research Council, Institute of Biomedical Technologies, Italy The study of the brain as neuronal network allows gaining insights to the analysis of information processing [1]. Network interactions can play a crucial role in this scenario. In fact many studies identify in the modality of neuronal interaction the key of the problem, but limitations in neuronal recordings makes the clear mechanisms elusive [2-4]. In this perspective, we investigated the functional organization of neuronal networks hypothesizing that they work as small-world networks [5]. We developed two different computational approaches: in the first, we asked whether neuronal populations actually express small-world properties during a learning task. To this purpose we developed the Inductive Conceptual Network (ICN), a hierarchical bio-inspired spiking network, able to learn invariant patterns by Variable-order Markov Models implemented in its nodes [6]. We found that the ICN model expressed small-word networks during learning. As control, we exerted the ICN with random binary inputs, where no patterns can be learnt, and we obtained no small-world network functional organization among nodes. Conjecturing that the expression of small-world networks is not only related to learning, in the second part, we built the de facto network assuming that every information process in brain occurs exhibiting functionally a small-world network. In the de facto network the functional dependencies of the small-world networks, were reflected by synchronous spikes. From the analysis of spiking activity, versus the null hypothesis where small-world networks were replaced by random networks, we detected mainly three functional characteristics, observed in biological networks: timing and rate codes, conventional coding strategies [7], and the neuronal avalanches, cascades of bursting activities distributed as a power-law distribution [8]. Interestingly, rate and timing codes are thus allowed to coexist in the same network model yet in nodes at different hierarchical positions. Our results suggest that small-word functional configurations represent a milestone of brain information processing at the level of neurons. In conclusion, accordingly with other theoretical and experimental works, short path length and sparse connectivity may promote simultaneous performance of information segregation (information retention) and integration (generalization) within neuronal systems. Acknowledgements We thank Riccardo Storchi and Jianyi Lin for his helpful suggestions. References 1. Bassett, D., S. et al. (2010). Efficient Physical Embedding of Topologically Complex Information Processing Networks in Brains and Computer Circuits. PLoS Comput Biol, 6(4): e1000748. 2. Honey, C.,J., Kötter, R., Breakspear, M., Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104: 10240-10245. 3. Bullmore, E., Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience 10, 186-198. 4. Horwitz, B., (2003). The elusive concept of brain connectivity. Neuroimage 19, 466-470. 5. Bassett, D., Bullmore E. (2006). Small-World Brain Networks, The Neuroscientist, 12(6):512-523. 6. Begleiter, R., El-Yaniv, R., Yona, G. (2004). On Prediction Using Variable Order Markov Models. Journal of Artificial Intelligence Research, 22:385-421. 7. Quiroga RQ, Panzeri S (2009) Extracting information from neuronal populations: information theory and decoding approaches. Nature Rew Neurosci, 10:173-185. 8. Klaus A, Yu S, Plenz D (2011) Statistical Analyses Support Power Law Distributions Found in Neuronal Avalanches. PLoS ONE 6(5): e19779. Keywords: information abstraction, machine learning, Neural coding, neuronal assemblies, neuronal avalanches, Small-world networks Conference: Bernstein Conference 2012, Munich, Germany, 12 Sep - 14 Sep, 2012. Presentation Type: Poster Topic: Other Citation: Zippo AG, Gelsomino G, Nencini S, Caramenti G, Valente M and Biella GE (2012). Computational investigations of small-worlds networks in neuronal populations . Front. Comput. Neurosci. Conference Abstract: Bernstein Conference 2012. doi: 10.3389/conf.fncom.2012.55.00241 Copyright: The abstracts in this collection have not been subject to any Frontiers peer review or checks, and are not endorsed by Frontiers. They are made available through the Frontiers publishing platform as a service to conference organizers and presenters. The copyright in the individual abstracts is owned by the author of each abstract or his/her employer unless otherwise stated. Each abstract, as well as the collection of abstracts, are published under a Creative Commons CC-BY 4.0 (attribution) licence (https://creativecommons.org/licenses/by/4.0/) and may thus be reproduced, translated, adapted and be the subject of derivative works provided the authors and Frontiers are attributed. For Frontiers’ terms and conditions please see https://www.frontiersin.org/legal/terms-and-conditions. Received: 18 Sep 2012; Published Online: 12 Sep 2012. * Correspondence: Dr. Antonio G Zippo, National Research Council, Institute of Molecular Bioimaging and Physiology, Segrate, Milano, 20090, Italy, antonio.zippo@gmail.com Login Required This action requires you to be registered with Frontiers and logged in. To register or login click here. Abstract Info Abstract The Authors in Frontiers Antonio G Zippo Giuliana Gelsomino Sara Nencini Gian Carlo Caramenti Maurizio Valente Gabriele E Biella Google Antonio G Zippo Giuliana Gelsomino Sara Nencini Gian Carlo Caramenti Maurizio Valente Gabriele E Biella Google Scholar Antonio G Zippo Giuliana Gelsomino Sara Nencini Gian Carlo Caramenti Maurizio Valente Gabriele E Biella PubMed Antonio G Zippo Giuliana Gelsomino Sara Nencini Gian Carlo Caramenti Maurizio Valente Gabriele E Biella Related Article in Frontiers Google Scholar PubMed Abstract Close Back to top Javascript is disabled. Please enable Javascript in your browser settings in order to see all the content on this page." @default.
- W2332355906 created "2016-06-24" @default.
- W2332355906 creator A5014081263 @default.
- W2332355906 date "2012-01-01" @default.
- W2332355906 modified "2023-09-23" @default.
- W2332355906 title "Computational investigations of small-worlds networks in neuronal populations" @default.
- W2332355906 doi "https://doi.org/10.3389/conf.fncom.2012.55.00241" @default.
- W2332355906 hasPublicationYear "2012" @default.
- W2332355906 type Work @default.
- W2332355906 sameAs 2332355906 @default.
- W2332355906 citedByCount "0" @default.
- W2332355906 crossrefType "journal-article" @default.
- W2332355906 hasAuthorship W2332355906A5014081263 @default.
- W2332355906 hasBestOaLocation W23323559061 @default.
- W2332355906 hasConcept C118403218 @default.
- W2332355906 hasConcept C119857082 @default.
- W2332355906 hasConcept C121332964 @default.
- W2332355906 hasConcept C136764020 @default.
- W2332355906 hasConcept C154945302 @default.
- W2332355906 hasConcept C15744967 @default.
- W2332355906 hasConcept C169760540 @default.
- W2332355906 hasConcept C17744445 @default.
- W2332355906 hasConcept C183331307 @default.
- W2332355906 hasConcept C188147891 @default.
- W2332355906 hasConcept C199539241 @default.
- W2332355906 hasConcept C2779662365 @default.
- W2332355906 hasConcept C2992317946 @default.
- W2332355906 hasConcept C34947359 @default.
- W2332355906 hasConcept C41008148 @default.
- W2332355906 hasConcept C62520636 @default.
- W2332355906 hasConceptScore W2332355906C118403218 @default.
- W2332355906 hasConceptScore W2332355906C119857082 @default.
- W2332355906 hasConceptScore W2332355906C121332964 @default.
- W2332355906 hasConceptScore W2332355906C136764020 @default.
- W2332355906 hasConceptScore W2332355906C154945302 @default.
- W2332355906 hasConceptScore W2332355906C15744967 @default.
- W2332355906 hasConceptScore W2332355906C169760540 @default.
- W2332355906 hasConceptScore W2332355906C17744445 @default.
- W2332355906 hasConceptScore W2332355906C183331307 @default.
- W2332355906 hasConceptScore W2332355906C188147891 @default.
- W2332355906 hasConceptScore W2332355906C199539241 @default.
- W2332355906 hasConceptScore W2332355906C2779662365 @default.
- W2332355906 hasConceptScore W2332355906C2992317946 @default.
- W2332355906 hasConceptScore W2332355906C34947359 @default.
- W2332355906 hasConceptScore W2332355906C41008148 @default.
- W2332355906 hasConceptScore W2332355906C62520636 @default.
- W2332355906 hasLocation W23323559061 @default.
- W2332355906 hasOpenAccess W2332355906 @default.
- W2332355906 hasPrimaryLocation W23323559061 @default.
- W2332355906 hasRelatedWork W1493999524 @default.
- W2332355906 hasRelatedWork W1510964369 @default.
- W2332355906 hasRelatedWork W1987778722 @default.
- W2332355906 hasRelatedWork W1993098504 @default.
- W2332355906 hasRelatedWork W2006836601 @default.
- W2332355906 hasRelatedWork W2108225273 @default.
- W2332355906 hasRelatedWork W2119653400 @default.
- W2332355906 hasRelatedWork W2332355906 @default.
- W2332355906 hasRelatedWork W2597749730 @default.
- W2332355906 hasRelatedWork W2903190731 @default.
- W2332355906 hasVolume "6" @default.
- W2332355906 isParatext "false" @default.
- W2332355906 isRetracted "false" @default.
- W2332355906 magId "2332355906" @default.
- W2332355906 workType "article" @default.