Matches in SemOpenAlex for { <https://semopenalex.org/work/W2332394503> ?p ?o ?g. }
- W2332394503 endingPage "398" @default.
- W2332394503 startingPage "388" @default.
- W2332394503 abstract "ConspectusThe asymmetric reduction of ketimines is an important method for the preparation of amines in optically pure form. Inspired by the biological system using NAD(P)H, Hantzsch ester has been extensively employed as a hydrogen donor in combination with chiral phosphoric acid for the transfer hydrogenation of ketimines to furnish amines with high to excellent enantioselectivities.We focused on 2-substituted benzothiazoline as a hydrogen donor in the phosphoric acid catalyzed transfer hydrogenation reaction of ketimines for the following reasons: (1) benzothiazoline is readily prepared just by mixing 2-aminobenzenethiol and aldehyde, (2) both reactivity (hydrogen donating ability) and enantioselectivity would be controlled by tuning the 2-substituent of benzothiazoline, and (3) benzothiazoline can be stored in a refrigerator under inert atmosphere without conceivable decomposition. Both the 2-position of benzothiazoline and the 3,3′-position of phosphoric acid are tunable in order to achieve excellent enantioselectivity.Benzothiazoline proved to be useful hydrogen donor in combination with chiral phosphoric acid for the transfer hydrogenation reaction of ketimine derivatives to afford the corresponding amines with high to excellent enantioselectivities by tuning the 2-substituent of benzothiazoline. Ketimines derived from acetophenone, propiophenone, α-keto ester, trifluoromethyl ketone, and difluoromethyl ketone derivatives proved to be suitable substrates. Benzothiazoline could be generated in situ starting from 2-aminobenzenethiol and aromatic aldehyde in the presence of ketimine and chiral phosphoric acid and successfully worked in the sequential transfer hydrogenation reaction. The reductive amination of dialkyl ketones also proceeded with high enantioselectivities. Use of 2-deuterated benzothiazoline led to the formation of α-deuterated amines with excellent enantioselectivities. The kinetic isotope effect (kH/kC = 3.8) was observed in the competitive reaction between H- and D-benzothiazoline, which explicitly implies that the cleavage of the C–H (C–D) bond is the rate-determining step in the transfer hydrogenation reaction.Benzothiazoline yielded products with higher enantioselectivity in the transfer hydrogenation reaction of ketimines, particularly ketimines derived from propiophenone derivatives, than Hantzsch ester. DFT study elucidated the mechanism, as well as the difference in selectivity, between benzothiazoline and Hantzsch ester. The chiral phosphoric acid activates ketimines and benzothiazoline by means of the Brønsted acidic site (proton) and the Brønsted basic site (phosphoryl oxygen), respectively, to accelerate the hydride transfer reaction." @default.
- W2332394503 created "2016-06-24" @default.
- W2332394503 creator A5019325973 @default.
- W2332394503 creator A5025592777 @default.
- W2332394503 creator A5045455463 @default.
- W2332394503 creator A5047852267 @default.
- W2332394503 date "2015-01-22" @default.
- W2332394503 modified "2023-10-18" @default.
- W2332394503 title "Benzothiazoline: Versatile Hydrogen Donor for Organocatalytic Transfer Hydrogenation" @default.
- W2332394503 cites W1980896239 @default.
- W2332394503 cites W1981328271 @default.
- W2332394503 cites W1993367766 @default.
- W2332394503 cites W2003927174 @default.
- W2332394503 cites W2008187958 @default.
- W2332394503 cites W2008592846 @default.
- W2332394503 cites W2009884940 @default.
- W2332394503 cites W2016075951 @default.
- W2332394503 cites W2017190500 @default.
- W2332394503 cites W2025381464 @default.
- W2332394503 cites W2033556576 @default.
- W2332394503 cites W2042662418 @default.
- W2332394503 cites W2046171757 @default.
- W2332394503 cites W2048909599 @default.
- W2332394503 cites W2057615451 @default.
- W2332394503 cites W2066564720 @default.
- W2332394503 cites W2069702158 @default.
- W2332394503 cites W2071603710 @default.
- W2332394503 cites W2076864706 @default.
- W2332394503 cites W2079821320 @default.
- W2332394503 cites W2080598523 @default.
- W2332394503 cites W2081332060 @default.
- W2332394503 cites W2082916506 @default.
- W2332394503 cites W2084848421 @default.
- W2332394503 cites W2085351645 @default.
- W2332394503 cites W2085610475 @default.
- W2332394503 cites W2092554224 @default.
- W2332394503 cites W2097446202 @default.
- W2332394503 cites W2099440377 @default.
- W2332394503 cites W2101850452 @default.
- W2332394503 cites W2114014545 @default.
- W2332394503 cites W2115132894 @default.
- W2332394503 cites W2118731200 @default.
- W2332394503 cites W2120780345 @default.
- W2332394503 cites W2124259339 @default.
- W2332394503 cites W2125333006 @default.
- W2332394503 cites W2134437779 @default.
- W2332394503 cites W2136663807 @default.
- W2332394503 cites W2137260662 @default.
- W2332394503 cites W2139104610 @default.
- W2332394503 cites W2146125840 @default.
- W2332394503 cites W2148868382 @default.
- W2332394503 cites W2150865621 @default.
- W2332394503 cites W2166305331 @default.
- W2332394503 cites W2169174125 @default.
- W2332394503 cites W2313539893 @default.
- W2332394503 cites W2314661568 @default.
- W2332394503 cites W2317589856 @default.
- W2332394503 cites W2324096249 @default.
- W2332394503 cites W2330401118 @default.
- W2332394503 cites W2332799615 @default.
- W2332394503 cites W2335533341 @default.
- W2332394503 cites W2949121973 @default.
- W2332394503 cites W2949589061 @default.
- W2332394503 cites W2950142963 @default.
- W2332394503 cites W2950426029 @default.
- W2332394503 cites W2952096353 @default.
- W2332394503 cites W2952361683 @default.
- W2332394503 cites W4235683650 @default.
- W2332394503 doi "https://doi.org/10.1021/ar500414x" @default.
- W2332394503 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25611073" @default.
- W2332394503 hasPublicationYear "2015" @default.
- W2332394503 type Work @default.
- W2332394503 sameAs 2332394503 @default.
- W2332394503 citedByCount "140" @default.
- W2332394503 countsByYear W23323945032015 @default.
- W2332394503 countsByYear W23323945032016 @default.
- W2332394503 countsByYear W23323945032017 @default.
- W2332394503 countsByYear W23323945032018 @default.
- W2332394503 countsByYear W23323945032019 @default.
- W2332394503 countsByYear W23323945032020 @default.
- W2332394503 countsByYear W23323945032021 @default.
- W2332394503 countsByYear W23323945032022 @default.
- W2332394503 countsByYear W23323945032023 @default.
- W2332394503 crossrefType "journal-article" @default.
- W2332394503 hasAuthorship W2332394503A5019325973 @default.
- W2332394503 hasAuthorship W2332394503A5025592777 @default.
- W2332394503 hasAuthorship W2332394503A5045455463 @default.
- W2332394503 hasAuthorship W2332394503A5047852267 @default.
- W2332394503 hasConcept C161790260 @default.
- W2332394503 hasConcept C178790620 @default.
- W2332394503 hasConcept C185592680 @default.
- W2332394503 hasConcept C2775888733 @default.
- W2332394503 hasConcept C2776622989 @default.
- W2332394503 hasConcept C2776715866 @default.
- W2332394503 hasConcept C2777738585 @default.
- W2332394503 hasConcept C2778567177 @default.
- W2332394503 hasConcept C2778689049 @default.
- W2332394503 hasConcept C2779938440 @default.