Matches in SemOpenAlex for { <https://semopenalex.org/work/W2332492702> ?p ?o ?g. }
- W2332492702 endingPage "459" @default.
- W2332492702 startingPage "447" @default.
- W2332492702 abstract "In this paper, critical conditions in electric power systems are monitored by applying various neural networks. In order to accomplish the stated goal, the authors tried several combinations of Feed Forward Neural Network and Layer Recurrent Neural Networks by imparting appropriate training schemes through supervised learning in order to formulate a comparative analysis on their performance. Once, training goes successful, the neural network learns how to deal with a set of newly presented data through validation and testing mechanism so as to evolve the best network structure and learning criteria. The proposed methodology has been tested on the standard IEEE 30-bus test system with the support of MATLAB based neural network toolbox. The results presented in this paper signify that the multi-layered feed forward neural network with Levenberg-Marquardt back propagation algorithm gives best training performance of all possible cases considered in this paper, thus validating the proposed methodology." @default.
- W2332492702 created "2016-06-24" @default.
- W2332492702 creator A5001036709 @default.
- W2332492702 creator A5065676508 @default.
- W2332492702 creator A5066539136 @default.
- W2332492702 creator A5069140803 @default.
- W2332492702 date "2014-09-30" @default.
- W2332492702 modified "2023-09-26" @default.
- W2332492702 title "Analysis of Critical Conditions in Electric Power Systems by Feed Forward and Layer Recurrent Neural Networks" @default.
- W2332492702 cites W108491051 @default.
- W2332492702 cites W1980304938 @default.
- W2332492702 cites W2015465003 @default.
- W2332492702 cites W2019950953 @default.
- W2332492702 cites W2039911572 @default.
- W2332492702 cites W2056476419 @default.
- W2332492702 cites W2061949258 @default.
- W2332492702 cites W2076833554 @default.
- W2332492702 cites W2079046445 @default.
- W2332492702 cites W2081191183 @default.
- W2332492702 cites W2096768134 @default.
- W2332492702 cites W2109680636 @default.
- W2332492702 cites W2129155313 @default.
- W2332492702 cites W2135504595 @default.
- W2332492702 cites W2137688796 @default.
- W2332492702 cites W2143270442 @default.
- W2332492702 cites W2155482699 @default.
- W2332492702 cites W2155537657 @default.
- W2332492702 cites W2161487799 @default.
- W2332492702 cites W2161877694 @default.
- W2332492702 cites W2212353926 @default.
- W2332492702 cites W2313021338 @default.
- W2332492702 cites W2324092737 @default.
- W2332492702 cites W3145224207 @default.
- W2332492702 doi "https://doi.org/10.15676/ijeei.2014.6.3.1" @default.
- W2332492702 hasPublicationYear "2014" @default.
- W2332492702 type Work @default.
- W2332492702 sameAs 2332492702 @default.
- W2332492702 citedByCount "2" @default.
- W2332492702 countsByYear W23324927022016 @default.
- W2332492702 countsByYear W23324927022018 @default.
- W2332492702 crossrefType "journal-article" @default.
- W2332492702 hasAuthorship W2332492702A5001036709 @default.
- W2332492702 hasAuthorship W2332492702A5065676508 @default.
- W2332492702 hasAuthorship W2332492702A5066539136 @default.
- W2332492702 hasAuthorship W2332492702A5069140803 @default.
- W2332492702 hasBestOaLocation W23324927021 @default.
- W2332492702 hasConcept C121332964 @default.
- W2332492702 hasConcept C127413603 @default.
- W2332492702 hasConcept C133731056 @default.
- W2332492702 hasConcept C154945302 @default.
- W2332492702 hasConcept C15744967 @default.
- W2332492702 hasConcept C163258240 @default.
- W2332492702 hasConcept C169760540 @default.
- W2332492702 hasConcept C171250308 @default.
- W2332492702 hasConcept C192562407 @default.
- W2332492702 hasConcept C2779227376 @default.
- W2332492702 hasConcept C2986949344 @default.
- W2332492702 hasConcept C38858127 @default.
- W2332492702 hasConcept C41008148 @default.
- W2332492702 hasConcept C47702885 @default.
- W2332492702 hasConcept C50644808 @default.
- W2332492702 hasConcept C62520636 @default.
- W2332492702 hasConcept C89227174 @default.
- W2332492702 hasConceptScore W2332492702C121332964 @default.
- W2332492702 hasConceptScore W2332492702C127413603 @default.
- W2332492702 hasConceptScore W2332492702C133731056 @default.
- W2332492702 hasConceptScore W2332492702C154945302 @default.
- W2332492702 hasConceptScore W2332492702C15744967 @default.
- W2332492702 hasConceptScore W2332492702C163258240 @default.
- W2332492702 hasConceptScore W2332492702C169760540 @default.
- W2332492702 hasConceptScore W2332492702C171250308 @default.
- W2332492702 hasConceptScore W2332492702C192562407 @default.
- W2332492702 hasConceptScore W2332492702C2779227376 @default.
- W2332492702 hasConceptScore W2332492702C2986949344 @default.
- W2332492702 hasConceptScore W2332492702C38858127 @default.
- W2332492702 hasConceptScore W2332492702C41008148 @default.
- W2332492702 hasConceptScore W2332492702C47702885 @default.
- W2332492702 hasConceptScore W2332492702C50644808 @default.
- W2332492702 hasConceptScore W2332492702C62520636 @default.
- W2332492702 hasConceptScore W2332492702C89227174 @default.
- W2332492702 hasIssue "3" @default.
- W2332492702 hasLocation W23324927021 @default.
- W2332492702 hasOpenAccess W2332492702 @default.
- W2332492702 hasPrimaryLocation W23324927021 @default.
- W2332492702 hasRelatedWork W1514026076 @default.
- W2332492702 hasRelatedWork W1604847762 @default.
- W2332492702 hasRelatedWork W1856252359 @default.
- W2332492702 hasRelatedWork W1874498466 @default.
- W2332492702 hasRelatedWork W2052585421 @default.
- W2332492702 hasRelatedWork W2258992572 @default.
- W2332492702 hasRelatedWork W2359410228 @default.
- W2332492702 hasRelatedWork W2381165384 @default.
- W2332492702 hasRelatedWork W3170086649 @default.
- W2332492702 hasRelatedWork W3177279640 @default.
- W2332492702 hasVolume "6" @default.
- W2332492702 isParatext "false" @default.
- W2332492702 isRetracted "false" @default.
- W2332492702 magId "2332492702" @default.