Matches in SemOpenAlex for { <https://semopenalex.org/work/W2332634756> ?p ?o ?g. }
- W2332634756 endingPage "86" @default.
- W2332634756 startingPage "71" @default.
- W2332634756 abstract "MEPS Marine Ecology Progress Series Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsTheme Sections MEPS 476:71-86 (2013) - DOI: https://doi.org/10.3354/meps10139 Facilitation of coral reef biodiversity and health by cave sponge communities Marc Slattery1,2,3,*, Deborah J. Gochfeld2,3, Cole G. Easson3, Lindsay R. K. O’Donahue3 1Department of Pharmacognosy, 2National Center for Natural Products Research, and 3Environmental Toxicology Research Program, University of Mississippi, University, Mississippi 38677-1848, USA *Email: slattery@olemiss.edu ABSTRACT: Marine caves are understudied ecosystems that are frequently associated with coral reef communities; many are tidally influenced and may host a highly diverse sponge fauna. Although each cave represents a distinct habitat likely structured by site-specific hydrographic processes, a more complete understanding of the ecology of these communities requires comparative studies. Based on a gradient of sponge cover within 5 Bahamian caves, we conducted a natural experiment in sponge-derived nutrient enrichment of nearby patch reefs. We tested the hypothesis that water exiting the cave during low tide provides a nutrient-rich resource that facilitates the diversity and health of nearby reef communities. The percent cover and diversity of corals surrounding the openings of caves were significantly higher than in similar habitats farther removed from these communities. There was a significant correlation between percent sponge cover within the caves and nitrate concentrations in seawater flowing out of the caves, and δ15N stable isotope signatures indicated enrichment of the nearby reefs by sponge-derived nitrate. Zooxanthellae abundance and total protein concentration were higher in corals from reefs near cave entrances, suggesting that those corals benefited more from cave nutrients than did corals farther from cave openings. In addition to corals, percent algal cover increased near cave entrances, but these potential competitors of corals were kept in check by increased levels of herbivory relative to sites removed from cave mouths. As global environmental changes continue to impact coral reef ecosystems, diversity ‘hot spots’, such as these marine caves, could serve as refuges and ‘seed-banks’ for nearby dwindling reef habitats. KEY WORDS: Facilitation · Nutrients · Sponges · Biodiversity · Coral health · Caves · Herbivory Full text in pdf format Supplementary material PreviousNextCite this article as: Slattery M, Gochfeld DJ, Easson CG, O’Donahue LRK (2013) Facilitation of coral reef biodiversity and health by cave sponge communities. Mar Ecol Prog Ser 476:71-86. https://doi.org/10.3354/meps10139 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in MEPS Vol. 476. Online publication date: February 27, 2013 Print ISSN: 0171-8630; Online ISSN: 1616-1599 Copyright © 2013 Inter-Research." @default.
- W2332634756 created "2016-06-24" @default.
- W2332634756 creator A5003823582 @default.
- W2332634756 creator A5019250484 @default.
- W2332634756 creator A5053312765 @default.
- W2332634756 creator A5066434861 @default.
- W2332634756 date "2013-02-27" @default.
- W2332634756 modified "2023-10-14" @default.
- W2332634756 title "Facilitation of coral reef biodiversity and health by cave sponge communities" @default.
- W2332634756 cites W1615578167 @default.
- W2332634756 cites W1965039133 @default.
- W2332634756 cites W1965830908 @default.
- W2332634756 cites W1985191483 @default.
- W2332634756 cites W1989609756 @default.
- W2332634756 cites W1993570618 @default.
- W2332634756 cites W1996877428 @default.
- W2332634756 cites W1998393588 @default.
- W2332634756 cites W1999306630 @default.
- W2332634756 cites W2000746029 @default.
- W2332634756 cites W2001092428 @default.
- W2332634756 cites W2002017626 @default.
- W2332634756 cites W2005235143 @default.
- W2332634756 cites W2006101114 @default.
- W2332634756 cites W2008002723 @default.
- W2332634756 cites W2008200025 @default.
- W2332634756 cites W2014899887 @default.
- W2332634756 cites W2015537445 @default.
- W2332634756 cites W2019991118 @default.
- W2332634756 cites W2030181434 @default.
- W2332634756 cites W2031214607 @default.
- W2332634756 cites W2035371668 @default.
- W2332634756 cites W2044290703 @default.
- W2332634756 cites W2044669084 @default.
- W2332634756 cites W2051621840 @default.
- W2332634756 cites W2052391052 @default.
- W2332634756 cites W2056754404 @default.
- W2332634756 cites W2058231566 @default.
- W2332634756 cites W2063150491 @default.
- W2332634756 cites W2068468304 @default.
- W2332634756 cites W2070725002 @default.
- W2332634756 cites W2078517931 @default.
- W2332634756 cites W2078732355 @default.
- W2332634756 cites W2087642910 @default.
- W2332634756 cites W2088575464 @default.
- W2332634756 cites W2092194424 @default.
- W2332634756 cites W2094168879 @default.
- W2332634756 cites W2098811561 @default.
- W2332634756 cites W2105082791 @default.
- W2332634756 cites W2105455311 @default.
- W2332634756 cites W2110715741 @default.
- W2332634756 cites W2111330504 @default.
- W2332634756 cites W2118718983 @default.
- W2332634756 cites W2120391274 @default.
- W2332634756 cites W2125141742 @default.
- W2332634756 cites W2125171109 @default.
- W2332634756 cites W2125200551 @default.
- W2332634756 cites W2126526637 @default.
- W2332634756 cites W2127231450 @default.
- W2332634756 cites W2141580088 @default.
- W2332634756 cites W2142135888 @default.
- W2332634756 cites W2142151945 @default.
- W2332634756 cites W2147452629 @default.
- W2332634756 cites W2150018281 @default.
- W2332634756 cites W2152142587 @default.
- W2332634756 cites W2155178521 @default.
- W2332634756 cites W2159267412 @default.
- W2332634756 cites W2321453376 @default.
- W2332634756 doi "https://doi.org/10.3354/meps10139" @default.
- W2332634756 hasPublicationYear "2013" @default.
- W2332634756 type Work @default.
- W2332634756 sameAs 2332634756 @default.
- W2332634756 citedByCount "20" @default.
- W2332634756 countsByYear W23326347562013 @default.
- W2332634756 countsByYear W23326347562014 @default.
- W2332634756 countsByYear W23326347562017 @default.
- W2332634756 countsByYear W23326347562018 @default.
- W2332634756 countsByYear W23326347562019 @default.
- W2332634756 countsByYear W23326347562020 @default.
- W2332634756 countsByYear W23326347562021 @default.
- W2332634756 countsByYear W23326347562022 @default.
- W2332634756 countsByYear W23326347562023 @default.
- W2332634756 crossrefType "journal-article" @default.
- W2332634756 hasAuthorship W2332634756A5003823582 @default.
- W2332634756 hasAuthorship W2332634756A5019250484 @default.
- W2332634756 hasAuthorship W2332634756A5053312765 @default.
- W2332634756 hasAuthorship W2332634756A5066434861 @default.
- W2332634756 hasBestOaLocation W23326347561 @default.
- W2332634756 hasConcept C111368507 @default.
- W2332634756 hasConcept C127313418 @default.
- W2332634756 hasConcept C130217890 @default.
- W2332634756 hasConcept C171878925 @default.
- W2332634756 hasConcept C18903297 @default.
- W2332634756 hasConcept C205649164 @default.
- W2332634756 hasConcept C2778849931 @default.
- W2332634756 hasConcept C59822182 @default.
- W2332634756 hasConcept C77044568 @default.
- W2332634756 hasConcept C79367842 @default.
- W2332634756 hasConcept C86803240 @default.