Matches in SemOpenAlex for { <https://semopenalex.org/work/W2332912277> ?p ?o ?g. }
- W2332912277 endingPage "1652" @default.
- W2332912277 startingPage "1644" @default.
- W2332912277 abstract "Aging power industries, together with the increase in demand from industrial and residential customers, are the main incentive for policy makers to define a road map to the next-generation power system called the smart grid. In the smart grid, the overall monitoring costs will be decreased, but at the same time, the risk of cyber attacks might be increased. Recently, a new type of attacks (called the stealth attack) has been introduced, which cannot be detected by the traditional bad data detection using state estimation. In this paper, we show how normal operations of power networks can be statistically distinguished from the case under stealthy attacks. We propose two machine-learning-based techniques for stealthy attack detection. The first method utilizes supervised learning over labeled data and trains a distributed support vector machine (SVM). The design of the distributed SVM is based on the alternating direction method of multipliers, which offers provable optimality and convergence rate. The second method requires no training data and detects the deviation in measurements. In both methods, principal component analysis is used to reduce the dimensionality of the data to be processed, which leads to lower computation complexities. The results of the proposed detection methods on IEEE standard test systems demonstrate the effectiveness of both schemes." @default.
- W2332912277 created "2016-06-24" @default.
- W2332912277 creator A5056442083 @default.
- W2332912277 creator A5063667378 @default.
- W2332912277 creator A5064567087 @default.
- W2332912277 creator A5067253160 @default.
- W2332912277 creator A5071054131 @default.
- W2332912277 date "2017-09-01" @default.
- W2332912277 modified "2023-10-06" @default.
- W2332912277 title "Detecting Stealthy False Data Injection Using Machine Learning in Smart Grid" @default.
- W2332912277 cites W1563088657 @default.
- W2332912277 cites W1975971173 @default.
- W2332912277 cites W1992488456 @default.
- W2332912277 cites W2005028112 @default.
- W2332912277 cites W2012352984 @default.
- W2332912277 cites W2015491033 @default.
- W2332912277 cites W2025406696 @default.
- W2332912277 cites W2033939184 @default.
- W2332912277 cites W2058703707 @default.
- W2332912277 cites W2061207936 @default.
- W2332912277 cites W2089758604 @default.
- W2332912277 cites W2090041969 @default.
- W2332912277 cites W2098286241 @default.
- W2332912277 cites W2100954602 @default.
- W2332912277 cites W2106424475 @default.
- W2332912277 cites W2107303585 @default.
- W2332912277 cites W2108906138 @default.
- W2332912277 cites W2116065935 @default.
- W2332912277 cites W2122646361 @default.
- W2332912277 cites W2129609617 @default.
- W2332912277 cites W2135189806 @default.
- W2332912277 cites W2140776455 @default.
- W2332912277 cites W2147779517 @default.
- W2332912277 cites W2155564322 @default.
- W2332912277 cites W3104622476 @default.
- W2332912277 cites W621862620 @default.
- W2332912277 doi "https://doi.org/10.1109/jsyst.2014.2341597" @default.
- W2332912277 hasPublicationYear "2017" @default.
- W2332912277 type Work @default.
- W2332912277 sameAs 2332912277 @default.
- W2332912277 citedByCount "365" @default.
- W2332912277 countsByYear W23329122772014 @default.
- W2332912277 countsByYear W23329122772015 @default.
- W2332912277 countsByYear W23329122772016 @default.
- W2332912277 countsByYear W23329122772017 @default.
- W2332912277 countsByYear W23329122772018 @default.
- W2332912277 countsByYear W23329122772019 @default.
- W2332912277 countsByYear W23329122772020 @default.
- W2332912277 countsByYear W23329122772021 @default.
- W2332912277 countsByYear W23329122772022 @default.
- W2332912277 countsByYear W23329122772023 @default.
- W2332912277 crossrefType "journal-article" @default.
- W2332912277 hasAuthorship W2332912277A5056442083 @default.
- W2332912277 hasAuthorship W2332912277A5063667378 @default.
- W2332912277 hasAuthorship W2332912277A5064567087 @default.
- W2332912277 hasAuthorship W2332912277A5067253160 @default.
- W2332912277 hasAuthorship W2332912277A5071054131 @default.
- W2332912277 hasConcept C10558101 @default.
- W2332912277 hasConcept C111030470 @default.
- W2332912277 hasConcept C119599485 @default.
- W2332912277 hasConcept C119857082 @default.
- W2332912277 hasConcept C12267149 @default.
- W2332912277 hasConcept C124101348 @default.
- W2332912277 hasConcept C127413603 @default.
- W2332912277 hasConcept C154945302 @default.
- W2332912277 hasConcept C187691185 @default.
- W2332912277 hasConcept C2524010 @default.
- W2332912277 hasConcept C27438332 @default.
- W2332912277 hasConcept C33923547 @default.
- W2332912277 hasConcept C41008148 @default.
- W2332912277 hasConcept C79403827 @default.
- W2332912277 hasConceptScore W2332912277C10558101 @default.
- W2332912277 hasConceptScore W2332912277C111030470 @default.
- W2332912277 hasConceptScore W2332912277C119599485 @default.
- W2332912277 hasConceptScore W2332912277C119857082 @default.
- W2332912277 hasConceptScore W2332912277C12267149 @default.
- W2332912277 hasConceptScore W2332912277C124101348 @default.
- W2332912277 hasConceptScore W2332912277C127413603 @default.
- W2332912277 hasConceptScore W2332912277C154945302 @default.
- W2332912277 hasConceptScore W2332912277C187691185 @default.
- W2332912277 hasConceptScore W2332912277C2524010 @default.
- W2332912277 hasConceptScore W2332912277C27438332 @default.
- W2332912277 hasConceptScore W2332912277C33923547 @default.
- W2332912277 hasConceptScore W2332912277C41008148 @default.
- W2332912277 hasConceptScore W2332912277C79403827 @default.
- W2332912277 hasIssue "3" @default.
- W2332912277 hasLocation W23329122771 @default.
- W2332912277 hasOpenAccess W2332912277 @default.
- W2332912277 hasPrimaryLocation W23329122771 @default.
- W2332912277 hasRelatedWork W1996541855 @default.
- W2332912277 hasRelatedWork W2101819884 @default.
- W2332912277 hasRelatedWork W2937631562 @default.
- W2332912277 hasRelatedWork W3004377704 @default.
- W2332912277 hasRelatedWork W3136979370 @default.
- W2332912277 hasRelatedWork W3194539120 @default.
- W2332912277 hasRelatedWork W3195168932 @default.
- W2332912277 hasRelatedWork W4205958290 @default.
- W2332912277 hasRelatedWork W4225691219 @default.