Matches in SemOpenAlex for { <https://semopenalex.org/work/W2333253951> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2333253951 abstract "We propose to use transmitting volume Bragg gratings recorded in photo-thermo-refractive glass as high efficient intracavity angular filters in order to achieve high beam quality while using large aperture active medium. The paper describes implementation of novel compact cavity design for solid state lasers, laser diodes, fiber crystal and others. Keywords—Holographic volume grating, laser cavity Scaling of the pumping size in gain medium is an efficient way to increase output power, improve heat exchange and suppress nonlinear effects in different types of laser systems. Obviously, the cost of such scaling is degradation of the laser beam quality. Complex, bulk cavities or other special techniques are required in order to obtain lasing with beam quality close to diffraction limit. We propose to use transmitting volume Bragg gratings (VBGs) recorded in photothermo-refractive glass (PTR-glass) as high efficient intracavity angular filters in order to achieve high beam quality while using large aperture active medium. In comparison with standard methods of mode selection based on spatial (aperture) mode filtration, VBGs provide highly efficient mode selection in the angular space. Therefore, a very compact and simple laser cavity with extended pumping area could be created based upon such PTR glass holographic elements. The paper describes implementation of this novel laser cavity design for solid state lasers, laser diodes, fiber crystal and others. While the first VBGs were recorded in PTR-glass long time ago [1], the real attention to these optical components began only when the technology allowed the fabrication of low loss and high efficiency PTR VBGs [2]. These new diffractive optical elements had high tolerance to laser radiation of up to multi kilowatt levels and triggered hundreds of publications in the area of laser applications. Today reflecting VBGs are used significantly more in laser systems in comparison with other elements from the same family. The most well-known application of such volume gratings is the narrowing and wavelength stabilization of the emission of laser diode sources [3] that are used for pumping of solid-state or fiber lasers. In comparison with reflecting gratings, transmitting VBGs have substantially narrower angular selectivity and wider spectral selectivity. Transmitting VBGs with angular selectivity of less than 50 μrad were demonstrated experimentally and this number is not the limit for our PTR glass technology. Nevertheless, up to now such a unique grating property did not find wide application in laser systems. We demonstrate experimentally the possibility to use a transmitting VBG for transverse mode selection in different types of with extended pumping region. First, we designed and made a solid state laser based on Nd-doped vanadate crystal and were able to shrink the cavity length by 30 times. The implemented plain cavity had a 10 mm length. The diameter of the pumped area varied from 0.8 to 2 mm (15-94 Fresnel numbers). Without mode selection the measured M 2 exceeded 5 for pumped area with diameter of 0.8 mm. Modeling showed that the cavity losses for TEM01 mode are 2.5 times higher than the losses for TEM00 mode for wide range of transmitting VBGs with different angular selectivity. The insertion of VGB filters in the laser cavity enabled stable lasing with M 2 =1.05-1.3 for 0.8-2.0 mm pumping diameters. The slope efficiency was more than 30% for optimal parameters of the VBG filter. This number is very close to the slope efficiency of a stable semispherical cavity with 30 cm length which was used as reference. Another type of an explored laser was an external cavity strongly multi-mode broad area laser diode with 100 μm stripe. In this case, a compact (~ 3 mm) external cavity was created by off-axis scheme with a transmitting VBG as a transverse mode filter and a reflecting VBG as an output coupler. We obtained lasing with divergence close to the diffraction limit and with efficiency just 15% less than that of a free running LD. High quality emission was obtained for pumping currents which did not exceed 6-7 times the threshold. At higher currents the beam quality degraded quickly due to influences of parasitic reflections from the AR-coated mirror of the internal laser diode cavity. We could substantially expand the mentioned current interval by using the same off-axis scheme with a VBG filter for a 100 μm stripe surface emitting diode laser with a detuned grating output coupler. Additionally, VBG spatial mode selection technique was applied successfully for external cavity fiber crystal and organic VECSEL. Obtained results will be discussed. [1] V.A. Borgman, L.B. Glebov, N.V. Nikonorov, G.T. Petrovskii, V.V. Savvin, A.D. Tsvetkov. Photothermal refractive effect in silicate glasses. Sov. Phys. Dokl., 34 (1989) 1011-1013. [2] L. Glebov Photosensitive holographic glass – new approach to creation of high power lasers Eur. J. Glass Sci. Technol. B, 48, 123–128, 2007 [3] G. Venus, A. Sevian, V. Smirnov, L. Glebov “High-brightness narrowline laser diode source with volume Bragg-grating feedback.” Proc. of SPIE Vol. 5711 (2005) , 166-176" @default.
- W2333253951 created "2016-06-24" @default.
- W2333253951 creator A5047841559 @default.
- W2333253951 creator A5048264296 @default.
- W2333253951 creator A5077206109 @default.
- W2333253951 creator A5079003842 @default.
- W2333253951 creator A5079640450 @default.
- W2333253951 date "2014-06-01" @default.
- W2333253951 modified "2023-09-25" @default.
- W2333253951 title "Novel laser cavity design by way of transmitting volume Bragg gratings" @default.
- W2333253951 cites W2158238536 @default.
- W2333253951 cites W3033552681 @default.
- W2333253951 doi "https://doi.org/10.1109/lo.2014.6886317" @default.
- W2333253951 hasPublicationYear "2014" @default.
- W2333253951 type Work @default.
- W2333253951 sameAs 2333253951 @default.
- W2333253951 citedByCount "0" @default.
- W2333253951 crossrefType "proceedings-article" @default.
- W2333253951 hasAuthorship W2333253951A5047841559 @default.
- W2333253951 hasAuthorship W2333253951A5048264296 @default.
- W2333253951 hasAuthorship W2333253951A5077206109 @default.
- W2333253951 hasAuthorship W2333253951A5079003842 @default.
- W2333253951 hasAuthorship W2333253951A5079640450 @default.
- W2333253951 hasConcept C115171683 @default.
- W2333253951 hasConcept C120665830 @default.
- W2333253951 hasConcept C121332964 @default.
- W2333253951 hasConcept C121477167 @default.
- W2333253951 hasConcept C17163034 @default.
- W2333253951 hasConcept C187590223 @default.
- W2333253951 hasConcept C190269828 @default.
- W2333253951 hasConcept C192562407 @default.
- W2333253951 hasConcept C200649887 @default.
- W2333253951 hasConcept C24890656 @default.
- W2333253951 hasConcept C2775843842 @default.
- W2333253951 hasConcept C2777813233 @default.
- W2333253951 hasConcept C2984025587 @default.
- W2333253951 hasConcept C40637687 @default.
- W2333253951 hasConcept C43091971 @default.
- W2333253951 hasConcept C49040817 @default.
- W2333253951 hasConcept C520434653 @default.
- W2333253951 hasConcept C78336883 @default.
- W2333253951 hasConcept C78434282 @default.
- W2333253951 hasConcept C927094 @default.
- W2333253951 hasConceptScore W2333253951C115171683 @default.
- W2333253951 hasConceptScore W2333253951C120665830 @default.
- W2333253951 hasConceptScore W2333253951C121332964 @default.
- W2333253951 hasConceptScore W2333253951C121477167 @default.
- W2333253951 hasConceptScore W2333253951C17163034 @default.
- W2333253951 hasConceptScore W2333253951C187590223 @default.
- W2333253951 hasConceptScore W2333253951C190269828 @default.
- W2333253951 hasConceptScore W2333253951C192562407 @default.
- W2333253951 hasConceptScore W2333253951C200649887 @default.
- W2333253951 hasConceptScore W2333253951C24890656 @default.
- W2333253951 hasConceptScore W2333253951C2775843842 @default.
- W2333253951 hasConceptScore W2333253951C2777813233 @default.
- W2333253951 hasConceptScore W2333253951C2984025587 @default.
- W2333253951 hasConceptScore W2333253951C40637687 @default.
- W2333253951 hasConceptScore W2333253951C43091971 @default.
- W2333253951 hasConceptScore W2333253951C49040817 @default.
- W2333253951 hasConceptScore W2333253951C520434653 @default.
- W2333253951 hasConceptScore W2333253951C78336883 @default.
- W2333253951 hasConceptScore W2333253951C78434282 @default.
- W2333253951 hasConceptScore W2333253951C927094 @default.
- W2333253951 hasLocation W23332539511 @default.
- W2333253951 hasOpenAccess W2333253951 @default.
- W2333253951 hasPrimaryLocation W23332539511 @default.
- W2333253951 hasRelatedWork W1800391246 @default.
- W2333253951 hasRelatedWork W1988118040 @default.
- W2333253951 hasRelatedWork W2005462811 @default.
- W2333253951 hasRelatedWork W2007001675 @default.
- W2333253951 hasRelatedWork W2007700021 @default.
- W2333253951 hasRelatedWork W2011724449 @default.
- W2333253951 hasRelatedWork W2024012770 @default.
- W2333253951 hasRelatedWork W2083133785 @default.
- W2333253951 hasRelatedWork W2104757157 @default.
- W2333253951 hasRelatedWork W2140152649 @default.
- W2333253951 hasRelatedWork W2353034065 @default.
- W2333253951 hasRelatedWork W2380294085 @default.
- W2333253951 hasRelatedWork W2381346268 @default.
- W2333253951 hasRelatedWork W2431965437 @default.
- W2333253951 hasRelatedWork W2462407682 @default.
- W2333253951 hasRelatedWork W2499315177 @default.
- W2333253951 hasRelatedWork W2595678242 @default.
- W2333253951 hasRelatedWork W300695941 @default.
- W2333253951 hasRelatedWork W302198281 @default.
- W2333253951 hasRelatedWork W2257298981 @default.
- W2333253951 isParatext "false" @default.
- W2333253951 isRetracted "false" @default.
- W2333253951 magId "2333253951" @default.
- W2333253951 workType "article" @default.