Matches in SemOpenAlex for { <https://semopenalex.org/work/W2333667072> ?p ?o ?g. }
- W2333667072 endingPage "5834" @default.
- W2333667072 startingPage "5817" @default.
- W2333667072 abstract "Two-dimensional anisotropic $N$-vector models are discussed in three contexts. (i) A comprehensive approach to the description of phase transitions in two-dimensional physical systems is outlined. It involves the identification of discrete models for critical phenomena in two-dimensional systems (such as adsorbed thin films) and their investigation by symmetry, duality, and Migdal renormalization-group methods. The identification is based on the Landau-Ginzburg-Wilson Hamiltonian concept and universality arguments. (ii) Relations among anisotropic continuous-spin Hamiltonians and discrete models are established by the Hubbard transformation and the Migdal renormalization-group transformation. Discrete models are conjectured to be equivalent to $N$-component continuous-spin models with local anisotropies. For example, it is shown that the Migdal recursion relations map the continuous-spin, cubic Heisenberg Hamiltonian onto the discrete cubic model. (iii) Many of the anisotropic $N$-vector Hamiltonians can be associated with discrete models that have the form of a generalized Potts model. Such a model, termed (${N}_{ensuremath{alpha}}$, ${N}_{ensuremath{beta}}$) model, is defined in terms of two interacting Potts-like variables associated with each lattice site, and is analyzed by duality and renormalization-group methods. The (${N}_{ensuremath{alpha}}$, ${N}_{ensuremath{beta}}$) Hamiltonian provides a unified description for large classes of discrete models. The concepts are exemplified by a detailed discussion of the two-dimensional Heisenberg model with cubic anisotropy, which has applications to the magnetic $ensuremath{alpha}ensuremath{-}ensuremath{beta}$ phase transition in overlayers of molecular oxygen on graphite. New experiments for the study of this system are also discussed." @default.
- W2333667072 created "2016-06-24" @default.
- W2333667072 creator A5036262874 @default.
- W2333667072 creator A5057779876 @default.
- W2333667072 date "1979-06-01" @default.
- W2333667072 modified "2023-09-23" @default.
- W2333667072 title "Two-dimensional anisotropic<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mi>N</mml:mi></mml:math>-vector models" @default.
- W2333667072 cites W1964809535 @default.
- W2333667072 cites W1967133435 @default.
- W2333667072 cites W1967970080 @default.
- W2333667072 cites W1972549051 @default.
- W2333667072 cites W1980782980 @default.
- W2333667072 cites W1981331604 @default.
- W2333667072 cites W1982870233 @default.
- W2333667072 cites W1984502907 @default.
- W2333667072 cites W1987055861 @default.
- W2333667072 cites W1987543472 @default.
- W2333667072 cites W1992474490 @default.
- W2333667072 cites W1992508945 @default.
- W2333667072 cites W1992767001 @default.
- W2333667072 cites W1995926931 @default.
- W2333667072 cites W1998561593 @default.
- W2333667072 cites W1999114272 @default.
- W2333667072 cites W2001384928 @default.
- W2333667072 cites W2002230997 @default.
- W2333667072 cites W2002792285 @default.
- W2333667072 cites W2003354304 @default.
- W2333667072 cites W2004005781 @default.
- W2333667072 cites W2004589772 @default.
- W2333667072 cites W2007163642 @default.
- W2333667072 cites W2008317504 @default.
- W2333667072 cites W2010693121 @default.
- W2333667072 cites W2015053024 @default.
- W2333667072 cites W2020158420 @default.
- W2333667072 cites W2022342539 @default.
- W2333667072 cites W2027938212 @default.
- W2333667072 cites W2037163753 @default.
- W2333667072 cites W2039728223 @default.
- W2333667072 cites W2040589978 @default.
- W2333667072 cites W2042409804 @default.
- W2333667072 cites W2045309209 @default.
- W2333667072 cites W2050879602 @default.
- W2333667072 cites W2054237517 @default.
- W2333667072 cites W2054356660 @default.
- W2333667072 cites W2066209358 @default.
- W2333667072 cites W2066435123 @default.
- W2333667072 cites W2071644626 @default.
- W2333667072 cites W2078674741 @default.
- W2333667072 cites W2083068614 @default.
- W2333667072 cites W2085802564 @default.
- W2333667072 cites W2086484168 @default.
- W2333667072 cites W2088122229 @default.
- W2333667072 cites W2089233887 @default.
- W2333667072 cites W2096134387 @default.
- W2333667072 cites W2135745986 @default.
- W2333667072 cites W2159793005 @default.
- W2333667072 cites W2225220691 @default.
- W2333667072 cites W2261736664 @default.
- W2333667072 doi "https://doi.org/10.1103/physrevb.19.5817" @default.
- W2333667072 hasPublicationYear "1979" @default.
- W2333667072 type Work @default.
- W2333667072 sameAs 2333667072 @default.
- W2333667072 citedByCount "90" @default.
- W2333667072 countsByYear W23336670722014 @default.
- W2333667072 countsByYear W23336670722017 @default.
- W2333667072 countsByYear W23336670722020 @default.
- W2333667072 countsByYear W23336670722023 @default.
- W2333667072 crossrefType "journal-article" @default.
- W2333667072 hasAuthorship W2333667072A5036262874 @default.
- W2333667072 hasAuthorship W2333667072A5057779876 @default.
- W2333667072 hasConcept C121332964 @default.
- W2333667072 hasConcept C126255220 @default.
- W2333667072 hasConcept C130787639 @default.
- W2333667072 hasConcept C149288129 @default.
- W2333667072 hasConcept C155355069 @default.
- W2333667072 hasConcept C201665358 @default.
- W2333667072 hasConcept C2780198381 @default.
- W2333667072 hasConcept C33923547 @default.
- W2333667072 hasConcept C37914503 @default.
- W2333667072 hasConcept C62520636 @default.
- W2333667072 hasConcept C68532491 @default.
- W2333667072 hasConcept C85725439 @default.
- W2333667072 hasConcept C98925819 @default.
- W2333667072 hasConceptScore W2333667072C121332964 @default.
- W2333667072 hasConceptScore W2333667072C126255220 @default.
- W2333667072 hasConceptScore W2333667072C130787639 @default.
- W2333667072 hasConceptScore W2333667072C149288129 @default.
- W2333667072 hasConceptScore W2333667072C155355069 @default.
- W2333667072 hasConceptScore W2333667072C201665358 @default.
- W2333667072 hasConceptScore W2333667072C2780198381 @default.
- W2333667072 hasConceptScore W2333667072C33923547 @default.
- W2333667072 hasConceptScore W2333667072C37914503 @default.
- W2333667072 hasConceptScore W2333667072C62520636 @default.
- W2333667072 hasConceptScore W2333667072C68532491 @default.
- W2333667072 hasConceptScore W2333667072C85725439 @default.
- W2333667072 hasConceptScore W2333667072C98925819 @default.
- W2333667072 hasIssue "11" @default.
- W2333667072 hasLocation W23336670721 @default.