Matches in SemOpenAlex for { <https://semopenalex.org/work/W2333718310> ?p ?o ?g. }
- W2333718310 endingPage "5762" @default.
- W2333718310 startingPage "5752" @default.
- W2333718310 abstract "In this paper, a neural-dynamic optimization-based nonlinear model predictive control (NMPC) is developed for controlling leader-follower mobile robots formation. Consider obstacles in the environments, a control strategy is proposed for the formations which includes separation-bearing-orientation scheme (SBOS) for regular leader-follower formation and separation-distance scheme (SDS) for obstacle avoidance. During the formation motion, the leader robot shall track a desired trajectory and the desire leader-follower relationship can be maintained through SBOS method; meanwhile, the followers can avoid the collision by applying the SDS. The formation-error kinematics of both SBOS and SDS are derived and a constrained quadratic programming (QP) can be obtained by transforming the MPC method. Then, over a finite-receding horizon, the QP problem can be solved by utilizing the primal-dual neural network (PDNN) with parallel capability. The computation complexity can be greatly reduced by the implemented neural-dynamic optimization. Compared with other existing formation control approaches, the developed solution in this paper is rooted in NMPC techniques with input constraints and the novel QP problem formulation. Finally, experimental studies of the proposed formation control approach have been performed on several mobile robots to verify the effectiveness." @default.
- W2333718310 created "2016-06-24" @default.
- W2333718310 creator A5003213281 @default.
- W2333718310 creator A5021606767 @default.
- W2333718310 creator A5082668462 @default.
- W2333718310 date "2016-09-01" @default.
- W2333718310 modified "2023-10-15" @default.
- W2333718310 title "Formation Control of Leader–Follower Mobile Robots’ Systems Using Model Predictive Control Based on Neural-Dynamic Optimization" @default.
- W2333718310 cites W1603314374 @default.
- W2333718310 cites W1965940578 @default.
- W2333718310 cites W1973862219 @default.
- W2333718310 cites W1981692507 @default.
- W2333718310 cites W1988901237 @default.
- W2333718310 cites W1994298651 @default.
- W2333718310 cites W2003456468 @default.
- W2333718310 cites W2005389191 @default.
- W2333718310 cites W2014405554 @default.
- W2333718310 cites W2016613339 @default.
- W2333718310 cites W2023832127 @default.
- W2333718310 cites W2026262758 @default.
- W2333718310 cites W2028235243 @default.
- W2333718310 cites W2028922880 @default.
- W2333718310 cites W2035625658 @default.
- W2333718310 cites W2044330174 @default.
- W2333718310 cites W2048825531 @default.
- W2333718310 cites W2048848526 @default.
- W2333718310 cites W2058804598 @default.
- W2333718310 cites W2062427453 @default.
- W2333718310 cites W2067359191 @default.
- W2333718310 cites W2080868110 @default.
- W2333718310 cites W2081030172 @default.
- W2333718310 cites W2087260217 @default.
- W2333718310 cites W2087884651 @default.
- W2333718310 cites W2093219038 @default.
- W2333718310 cites W2097113878 @default.
- W2333718310 cites W2097346851 @default.
- W2333718310 cites W2098764734 @default.
- W2333718310 cites W2099397914 @default.
- W2333718310 cites W2102227134 @default.
- W2333718310 cites W2118204568 @default.
- W2333718310 cites W2122800638 @default.
- W2333718310 cites W2133754447 @default.
- W2333718310 cites W2139369541 @default.
- W2333718310 cites W2140947684 @default.
- W2333718310 cites W2147928602 @default.
- W2333718310 cites W2153202134 @default.
- W2333718310 cites W2160612266 @default.
- W2333718310 cites W2162597485 @default.
- W2333718310 cites W2165413656 @default.
- W2333718310 cites W2169082695 @default.
- W2333718310 cites W2220369366 @default.
- W2333718310 doi "https://doi.org/10.1109/tie.2016.2542788" @default.
- W2333718310 hasPublicationYear "2016" @default.
- W2333718310 type Work @default.
- W2333718310 sameAs 2333718310 @default.
- W2333718310 citedByCount "124" @default.
- W2333718310 countsByYear W23337183102017 @default.
- W2333718310 countsByYear W23337183102018 @default.
- W2333718310 countsByYear W23337183102019 @default.
- W2333718310 countsByYear W23337183102020 @default.
- W2333718310 countsByYear W23337183102021 @default.
- W2333718310 countsByYear W23337183102022 @default.
- W2333718310 countsByYear W23337183102023 @default.
- W2333718310 crossrefType "journal-article" @default.
- W2333718310 hasAuthorship W2333718310A5003213281 @default.
- W2333718310 hasAuthorship W2333718310A5021606767 @default.
- W2333718310 hasAuthorship W2333718310A5082668462 @default.
- W2333718310 hasConcept C11413529 @default.
- W2333718310 hasConcept C121332964 @default.
- W2333718310 hasConcept C121704057 @default.
- W2333718310 hasConcept C126255220 @default.
- W2333718310 hasConcept C127413603 @default.
- W2333718310 hasConcept C1276947 @default.
- W2333718310 hasConcept C133731056 @default.
- W2333718310 hasConcept C13662910 @default.
- W2333718310 hasConcept C137836250 @default.
- W2333718310 hasConcept C154945302 @default.
- W2333718310 hasConcept C172205157 @default.
- W2333718310 hasConcept C19966478 @default.
- W2333718310 hasConcept C203479927 @default.
- W2333718310 hasConcept C2775924081 @default.
- W2333718310 hasConcept C2780864053 @default.
- W2333718310 hasConcept C33923547 @default.
- W2333718310 hasConcept C38652104 @default.
- W2333718310 hasConcept C39920418 @default.
- W2333718310 hasConcept C41008148 @default.
- W2333718310 hasConcept C47446073 @default.
- W2333718310 hasConcept C50644808 @default.
- W2333718310 hasConcept C6557445 @default.
- W2333718310 hasConcept C6683253 @default.
- W2333718310 hasConcept C74650414 @default.
- W2333718310 hasConcept C81845259 @default.
- W2333718310 hasConcept C86803240 @default.
- W2333718310 hasConcept C90509273 @default.
- W2333718310 hasConceptScore W2333718310C11413529 @default.
- W2333718310 hasConceptScore W2333718310C121332964 @default.
- W2333718310 hasConceptScore W2333718310C121704057 @default.
- W2333718310 hasConceptScore W2333718310C126255220 @default.