Matches in SemOpenAlex for { <https://semopenalex.org/work/W2333735510> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W2333735510 abstract "PreviousNext No AccessSEG Technical Program Expanded Abstracts 2014Application: Channel detection using principle component spectral analysis (PCSA) methodAuthors: Yan GaohanYang WuyangWei XinjianYang QingWang EnliYan GaohanPetroChinaSearch for more papers by this author, Yang WuyangPetroChinaSearch for more papers by this author, Wei XinjianPetroChinaSearch for more papers by this author, Yang QingPetroChinaSearch for more papers by this author, and Wang EnliPetroChinaSearch for more papers by this authorhttps://doi.org/10.1190/segam2014-0657.1 SectionsSupplemental MaterialAboutPDF/ePub ToolsAdd to favoritesDownload CitationsTrack CitationsPermissions ShareFacebookTwitterLinked InRedditEmail Abstract Spectral decomposition is a method applied in geophysical interpretation widely, which can reveal the lateral variation in thin bed and is effective in channel detection. Generally, dozens of single frequency volume data would be generated to analyze for one seismic volume. However, lots of redundancy exist among these single frequency data, which leads to the result that interpreters are usually hard to choose those correct frequencies to characterize the seismic data. Principle component analysis (PCA) was applied to those single frequency data, which is able to obtain the most important elements and structures from overabundance data, and figure out the simple structure hidden in the complicated data. The real seismic data test demonstrates the effectiveness of this method, which is able to depict the channel characteristics more delicately. Keywords: attributes, case history, statistical, transform, effectivePermalink: https://doi.org/10.1190/segam2014-0657.1FiguresReferencesRelatedDetails SEG Technical Program Expanded Abstracts 2014ISSN (print):1052-3812 ISSN (online):1949-4645Copyright: 2014 Pages: 5183 publication data© 2014 Published in electronic format with permission by the Society of Exploration GeophysicistsPublisher:Society of Exploration Geophysicists HistoryPublished: 05 Aug 2014 CITATION INFORMATION Yan Gaohan, Yang Wuyang, Wei Xinjian, Yang Qing, and Wang Enli, (2014), Application: Channel detection using principle component spectral analysis (PCSA) method, SEG Technical Program Expanded Abstracts : 1575-1579. https://doi.org/10.1190/segam2014-0657.1 Plain-Language Summary Keywordsattributescase historystatisticaltransformeffectivePDF DownloadLoading ..." @default.
- W2333735510 created "2016-06-24" @default.
- W2333735510 creator A5016297588 @default.
- W2333735510 creator A5018538741 @default.
- W2333735510 creator A5032668433 @default.
- W2333735510 creator A5039024639 @default.
- W2333735510 creator A5080326663 @default.
- W2333735510 date "2014-08-05" @default.
- W2333735510 modified "2023-10-16" @default.
- W2333735510 title "Application: Channel detection using principle component spectral analysis (PCSA) method" @default.
- W2333735510 cites W1992137384 @default.
- W2333735510 cites W2030242689 @default.
- W2333735510 cites W2070106395 @default.
- W2333735510 cites W2139084611 @default.
- W2333735510 doi "https://doi.org/10.1190/segam2014-0657.1" @default.
- W2333735510 hasPublicationYear "2014" @default.
- W2333735510 type Work @default.
- W2333735510 sameAs 2333735510 @default.
- W2333735510 citedByCount "0" @default.
- W2333735510 crossrefType "proceedings-article" @default.
- W2333735510 hasAuthorship W2333735510A5016297588 @default.
- W2333735510 hasAuthorship W2333735510A5018538741 @default.
- W2333735510 hasAuthorship W2333735510A5032668433 @default.
- W2333735510 hasAuthorship W2333735510A5039024639 @default.
- W2333735510 hasAuthorship W2333735510A5080326663 @default.
- W2333735510 hasConcept C111919701 @default.
- W2333735510 hasConcept C121332964 @default.
- W2333735510 hasConcept C124101348 @default.
- W2333735510 hasConcept C127162648 @default.
- W2333735510 hasConcept C152124472 @default.
- W2333735510 hasConcept C168167062 @default.
- W2333735510 hasConcept C41008148 @default.
- W2333735510 hasConcept C76155785 @default.
- W2333735510 hasConcept C97355855 @default.
- W2333735510 hasConceptScore W2333735510C111919701 @default.
- W2333735510 hasConceptScore W2333735510C121332964 @default.
- W2333735510 hasConceptScore W2333735510C124101348 @default.
- W2333735510 hasConceptScore W2333735510C127162648 @default.
- W2333735510 hasConceptScore W2333735510C152124472 @default.
- W2333735510 hasConceptScore W2333735510C168167062 @default.
- W2333735510 hasConceptScore W2333735510C41008148 @default.
- W2333735510 hasConceptScore W2333735510C76155785 @default.
- W2333735510 hasConceptScore W2333735510C97355855 @default.
- W2333735510 hasLocation W23337355101 @default.
- W2333735510 hasOpenAccess W2333735510 @default.
- W2333735510 hasPrimaryLocation W23337355101 @default.
- W2333735510 hasRelatedWork W1538624230 @default.
- W2333735510 hasRelatedWork W2001372204 @default.
- W2333735510 hasRelatedWork W2084166352 @default.
- W2333735510 hasRelatedWork W2150880749 @default.
- W2333735510 hasRelatedWork W2360796461 @default.
- W2333735510 hasRelatedWork W2364925730 @default.
- W2333735510 hasRelatedWork W2379533788 @default.
- W2333735510 hasRelatedWork W2900763005 @default.
- W2333735510 hasRelatedWork W2978499776 @default.
- W2333735510 hasRelatedWork W2795025438 @default.
- W2333735510 isParatext "false" @default.
- W2333735510 isRetracted "false" @default.
- W2333735510 magId "2333735510" @default.
- W2333735510 workType "article" @default.