Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334128933> ?p ?o ?g. }
- W2334128933 endingPage "435" @default.
- W2334128933 startingPage "420" @default.
- W2334128933 abstract "With a view to understanding ignition and combustion behaviours in diesel engines, this study investigates several aspects of ignition and combustion of an n-dodecane spray in a high pressure, high temperature chamber, known as Spray A, using data resulting from modelling using the transported probability density function (TPDF) method. The model has been validated comprehensively with good to excellent agreement in our previous work against all available experimental data including for mixture-fraction and velocity fields in non-reacting cases, and flame lift-off length and ignition delay in reacting cases. This good agreement encourages further investigation of the numerical model results to help understand the structure of this flame, which serves to complement the experimental information that is available, which is very limited due to the difficult experimental conditions in which this flame exists. For example, quantitative experimental measurements of local mixture-fraction, temperature, velocity gradients, etc. are not yet possible in reacting cases. Analysis of the model results shows that two-stage ignition is found to occur across the ambient temperature conditions considered: the first stage is rapidly initiated on the lean side where temperatures are high and sequentially moves to richer, cooler conditions. The first stage is extremely resilient to turbulence, occurring in a region of very low Damköhler number. The second stage of ignition occurs first in rich mixtures in a region behind the head of the fuel jet where mixture gradients are low, and appears to be influenced strongly by turbulence. Relative to a homogeneous reactor, it is delayed on the lean side but advanced on the rich side, suggesting entrainment and mixing from the early igniting lean regions into richer mixtures is an important moderator of the ignition process. The second-stage ignition front propagates at very high velocities initially, suggesting it is a sequential ignition moving according to gradients of ignition delay and/or residence time. The flame stabilises however on the lean side in a region of much lower velocity, where turbulent velocity fluctuations are sufficiently high such that turbulent transport influences the propagation. It stabilises in a region of low Damköhler number which implies that a competition of chemistry versus micro-mixing might also be involved in stabilisation. The stabilisation mechanism is investigated by an analysis of the transport budgets, showing the flame is stabilised by autoignition but moderated by turbulent diffusion. Further analysis of the flame index supports this stabilisation mechanism, and demonstrates the simultaneous existence of non-premixed and premixed combustion modes in the same flame. Analysis of the flow fields also reveals that local entrainment and dilatation are important flow features near the flame base." @default.
- W2334128933 created "2016-06-24" @default.
- W2334128933 creator A5003090345 @default.
- W2334128933 creator A5016681942 @default.
- W2334128933 creator A5029709349 @default.
- W2334128933 creator A5057810257 @default.
- W2334128933 creator A5059013312 @default.
- W2334128933 creator A5068312712 @default.
- W2334128933 creator A5069318927 @default.
- W2334128933 creator A5090788005 @default.
- W2334128933 date "2016-06-01" @default.
- W2334128933 modified "2023-10-06" @default.
- W2334128933 title "An analysis of the structure of an n-dodecane spray flame using TPDF modelling" @default.
- W2334128933 cites W1496427836 @default.
- W2334128933 cites W1536152854 @default.
- W2334128933 cites W1773489794 @default.
- W2334128933 cites W1846296142 @default.
- W2334128933 cites W1867459696 @default.
- W2334128933 cites W1923016850 @default.
- W2334128933 cites W1963872220 @default.
- W2334128933 cites W1969782195 @default.
- W2334128933 cites W1974296218 @default.
- W2334128933 cites W1975003411 @default.
- W2334128933 cites W1979016307 @default.
- W2334128933 cites W1979797737 @default.
- W2334128933 cites W1983911456 @default.
- W2334128933 cites W1984853982 @default.
- W2334128933 cites W1988952733 @default.
- W2334128933 cites W1989464538 @default.
- W2334128933 cites W1989687806 @default.
- W2334128933 cites W1996006035 @default.
- W2334128933 cites W1997215668 @default.
- W2334128933 cites W1999010882 @default.
- W2334128933 cites W1999710482 @default.
- W2334128933 cites W2000258203 @default.
- W2334128933 cites W2004273402 @default.
- W2334128933 cites W2005803020 @default.
- W2334128933 cites W2006282718 @default.
- W2334128933 cites W2006386344 @default.
- W2334128933 cites W2010116665 @default.
- W2334128933 cites W2012315869 @default.
- W2334128933 cites W2014892443 @default.
- W2334128933 cites W2016277033 @default.
- W2334128933 cites W2018984638 @default.
- W2334128933 cites W2019904253 @default.
- W2334128933 cites W2020209192 @default.
- W2334128933 cites W2024290408 @default.
- W2334128933 cites W2025071554 @default.
- W2334128933 cites W2025366867 @default.
- W2334128933 cites W2028265528 @default.
- W2334128933 cites W2034434606 @default.
- W2334128933 cites W2035523014 @default.
- W2334128933 cites W2035545087 @default.
- W2334128933 cites W2039162495 @default.
- W2334128933 cites W2048512679 @default.
- W2334128933 cites W2049069130 @default.
- W2334128933 cites W2050689557 @default.
- W2334128933 cites W2051438065 @default.
- W2334128933 cites W2055802680 @default.
- W2334128933 cites W2061429461 @default.
- W2334128933 cites W2061472476 @default.
- W2334128933 cites W2064201579 @default.
- W2334128933 cites W2065317310 @default.
- W2334128933 cites W2067809794 @default.
- W2334128933 cites W2071049852 @default.
- W2334128933 cites W2071876135 @default.
- W2334128933 cites W2073999513 @default.
- W2334128933 cites W2075450504 @default.
- W2334128933 cites W2075596910 @default.
- W2334128933 cites W2076420319 @default.
- W2334128933 cites W2076658351 @default.
- W2334128933 cites W2079510348 @default.
- W2334128933 cites W2081450993 @default.
- W2334128933 cites W2082335044 @default.
- W2334128933 cites W2086766307 @default.
- W2334128933 cites W2088183030 @default.
- W2334128933 cites W2088458306 @default.
- W2334128933 cites W2090271231 @default.
- W2334128933 cites W2090491700 @default.
- W2334128933 cites W2094671346 @default.
- W2334128933 cites W2099324631 @default.
- W2334128933 cites W2103456859 @default.
- W2334128933 cites W2116088054 @default.
- W2334128933 cites W2127446985 @default.
- W2334128933 cites W2141445301 @default.
- W2334128933 cites W2141963988 @default.
- W2334128933 cites W2150400219 @default.
- W2334128933 cites W2156652305 @default.
- W2334128933 cites W2167604734 @default.
- W2334128933 cites W2206455835 @default.
- W2334128933 doi "https://doi.org/10.1016/j.combustflame.2015.11.034" @default.
- W2334128933 hasPublicationYear "2016" @default.
- W2334128933 type Work @default.
- W2334128933 sameAs 2334128933 @default.
- W2334128933 citedByCount "77" @default.
- W2334128933 countsByYear W23341289332016 @default.
- W2334128933 countsByYear W23341289332017 @default.
- W2334128933 countsByYear W23341289332018 @default.