Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334172719> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2334172719 abstract "The present study investigates the best artificial neural network (ANN) approach to estimate the measured convective heat transfer coefficient of R134a flowing downward inside a vertical smooth copper tube having an inner diameter of 8.1mm and a length of 500mm during annular flow numerically. R134a and water are used as working fluids in the tube side and annular side of a double tube heat exchanger, respectively. Experimental data, used as the ANN training set, came from intube condensation tests including three different mass fluxes of R134a such as 260, 340 and 456 kg m−2s−1, two different saturation temperatures of R134a such as 40 and 50 °C and heat fluxes ranging from 10.83 to 50.89 kW m−2. Accuracy of the dataset was proven in many papers in the literature. The quality of the refrigerant in the test section is calculated considering the temperature and pressure obtained from the experiment. The pressure drop across the test section is directly measured by a differential pressure transducer. Measured values of test section such as mass flux, heat flux, the temperature difference between the tube wall and saturation temperature, average vapor quality are assigned as input of the ANNs, while the experimental condensation heat transfer coefficient and measured pressure drop are specified as the output in the analysis. The artificial neural network (ANN) methods of multi-layer perceptron (MLP), radial basis networks (RBFN), generalized regression neural network (GRNN) and adaptive neuro-fuzzy inference system (ANFIS) were used to decide the best approach for modeling condensation heat transfer characteristics of R134a. 183 data points obtained in the experiments are divided into two sets randomly. Sets of test and training/validation are including 33 and 120/30 data points respectively. In training phase, 5-fold cross validation is used for determine the best value of ANNs control parameters. The ANNs performances were measured by mean relative error criteria with the usage of unknown test sets. The performance of the method of multi layer perceptron (MLP) with 5-13-1 architecture and radial basis function networks (RBFN) with the spread coefficient (sp) of 40000 were found to be superior to other methods and architectures by means of satisfactory results with their deviations within the range of ±0.58% for the estimated condensation heat transfer coefficient and ±1.74% for the estimated pressure drop respectively." @default.
- W2334172719 created "2016-06-24" @default.
- W2334172719 creator A5033993155 @default.
- W2334172719 creator A5040784126 @default.
- W2334172719 creator A5051241673 @default.
- W2334172719 date "2010-01-01" @default.
- W2334172719 modified "2023-09-23" @default.
- W2334172719 title "Determination of Condensation Heat Transfer Characteristics of R134A by Means of Artificial Intelligence Method" @default.
- W2334172719 doi "https://doi.org/10.1115/imece2010-38453" @default.
- W2334172719 hasPublicationYear "2010" @default.
- W2334172719 type Work @default.
- W2334172719 sameAs 2334172719 @default.
- W2334172719 citedByCount "1" @default.
- W2334172719 countsByYear W23341727192013 @default.
- W2334172719 crossrefType "proceedings-article" @default.
- W2334172719 hasAuthorship W2334172719A5033993155 @default.
- W2334172719 hasAuthorship W2334172719A5040784126 @default.
- W2334172719 hasAuthorship W2334172719A5051241673 @default.
- W2334172719 hasConcept C121332964 @default.
- W2334172719 hasConcept C154945302 @default.
- W2334172719 hasConcept C185592680 @default.
- W2334172719 hasConcept C192562407 @default.
- W2334172719 hasConcept C200093464 @default.
- W2334172719 hasConcept C39432304 @default.
- W2334172719 hasConcept C41008148 @default.
- W2334172719 hasConcept C50517652 @default.
- W2334172719 hasConcept C97355855 @default.
- W2334172719 hasConceptScore W2334172719C121332964 @default.
- W2334172719 hasConceptScore W2334172719C154945302 @default.
- W2334172719 hasConceptScore W2334172719C185592680 @default.
- W2334172719 hasConceptScore W2334172719C192562407 @default.
- W2334172719 hasConceptScore W2334172719C200093464 @default.
- W2334172719 hasConceptScore W2334172719C39432304 @default.
- W2334172719 hasConceptScore W2334172719C41008148 @default.
- W2334172719 hasConceptScore W2334172719C50517652 @default.
- W2334172719 hasConceptScore W2334172719C97355855 @default.
- W2334172719 hasLocation W23341727191 @default.
- W2334172719 hasOpenAccess W2334172719 @default.
- W2334172719 hasPrimaryLocation W23341727191 @default.
- W2334172719 hasRelatedWork W1572946863 @default.
- W2334172719 hasRelatedWork W1617024057 @default.
- W2334172719 hasRelatedWork W1623802847 @default.
- W2334172719 hasRelatedWork W1970449802 @default.
- W2334172719 hasRelatedWork W198965962 @default.
- W2334172719 hasRelatedWork W2032788800 @default.
- W2334172719 hasRelatedWork W2048545109 @default.
- W2334172719 hasRelatedWork W2061550853 @default.
- W2334172719 hasRelatedWork W2252519292 @default.
- W2334172719 hasRelatedWork W2360423845 @default.
- W2334172719 hasRelatedWork W2461295223 @default.
- W2334172719 hasRelatedWork W2766008560 @default.
- W2334172719 hasRelatedWork W2778671519 @default.
- W2334172719 hasRelatedWork W3000981096 @default.
- W2334172719 hasRelatedWork W3011074332 @default.
- W2334172719 hasRelatedWork W3041981410 @default.
- W2334172719 hasRelatedWork W305209915 @default.
- W2334172719 hasRelatedWork W3084113154 @default.
- W2334172719 hasRelatedWork W3105926708 @default.
- W2334172719 hasRelatedWork W2111592507 @default.
- W2334172719 isParatext "false" @default.
- W2334172719 isRetracted "false" @default.
- W2334172719 magId "2334172719" @default.
- W2334172719 workType "article" @default.