Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334305417> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W2334305417 endingPage "590" @default.
- W2334305417 startingPage "590" @default.
- W2334305417 abstract "The problem solved here is related to an old problem in algebraic geometry. Suppose f(x, y) is an irreducible polynomial in two variables and that the coefficients involve certain parameters 2, 22-, * I )rand the coefficient field k. Let the algebraic curve defined by f(x, y) = 0 over the field of coefficients k(21, 2, *-. = k(2) be of genus g. If the At are given special values 2i' in an algebraic extension of k, f(x, y) may factor in k(2'). Each irreducible factor defines an algebraic curve with genus g,. What is the relation between g and the gi? For an extended discussion of this problem, see Picard et Simart [10, Volume II, Ch. III]. The problem actually solved here is algebraic and is stated in Section 4. The solution, Theorem 4.19, of the algebraic problem gives the solution of the geometric problem if the powers of a solution of f(x, y) 0, considered as an equation with coefficients in k(2, x), form the integral basis mentioned in Lemma 4.1. Otherwise, components which are considered in the algebraic formulation may not appear at all in the geometric formulation. Sections 2 and 3 are devoted to a discussion of the tools needed to solve the main problem. The results stated there are well known in so far as they apply to fields. These results must be restated for rings in a form applicable to the main problem. In no case, even where we carry it out, is the extension any more than an exercise. It is also necessary to replace the trace by an arbitrary linear mapping, as a means for obtaining differentials in an algebraic extension of a field in which differentials are given. This is given in Artin [1, Ch. 13]. Therefore, we shall prove only a few statements which require amplification. It is with great pleasure that I express my appreciation to Professor Emil Artin, for without his guidance, advice, and inspiration this work would have been quite impossible; and to Professor Solomon Lefschetz" @default.
- W2334305417 created "2016-06-24" @default.
- W2334305417 creator A5002865252 @default.
- W2334305417 date "1958-05-01" @default.
- W2334305417 modified "2023-09-26" @default.
- W2334305417 title "Reduction of an Algebraic Function Field Modulo a Prime in the Constant Field" @default.
- W2334305417 cites W1585490088 @default.
- W2334305417 cites W1874323780 @default.
- W2334305417 cites W2101104875 @default.
- W2334305417 cites W2142293051 @default.
- W2334305417 doi "https://doi.org/10.2307/1969873" @default.
- W2334305417 hasPublicationYear "1958" @default.
- W2334305417 type Work @default.
- W2334305417 sameAs 2334305417 @default.
- W2334305417 citedByCount "9" @default.
- W2334305417 countsByYear W23343054172022 @default.
- W2334305417 crossrefType "journal-article" @default.
- W2334305417 hasAuthorship W2334305417A5002865252 @default.
- W2334305417 hasConcept C111335779 @default.
- W2334305417 hasConcept C114614502 @default.
- W2334305417 hasConcept C118615104 @default.
- W2334305417 hasConcept C134306372 @default.
- W2334305417 hasConcept C136119220 @default.
- W2334305417 hasConcept C141071460 @default.
- W2334305417 hasConcept C148607811 @default.
- W2334305417 hasConcept C184992742 @default.
- W2334305417 hasConcept C199360897 @default.
- W2334305417 hasConcept C202444582 @default.
- W2334305417 hasConcept C2524010 @default.
- W2334305417 hasConcept C2777027219 @default.
- W2334305417 hasConcept C2778795570 @default.
- W2334305417 hasConcept C3018781457 @default.
- W2334305417 hasConcept C33923547 @default.
- W2334305417 hasConcept C41008148 @default.
- W2334305417 hasConcept C54732982 @default.
- W2334305417 hasConcept C71924100 @default.
- W2334305417 hasConcept C9376300 @default.
- W2334305417 hasConcept C9652623 @default.
- W2334305417 hasConceptScore W2334305417C111335779 @default.
- W2334305417 hasConceptScore W2334305417C114614502 @default.
- W2334305417 hasConceptScore W2334305417C118615104 @default.
- W2334305417 hasConceptScore W2334305417C134306372 @default.
- W2334305417 hasConceptScore W2334305417C136119220 @default.
- W2334305417 hasConceptScore W2334305417C141071460 @default.
- W2334305417 hasConceptScore W2334305417C148607811 @default.
- W2334305417 hasConceptScore W2334305417C184992742 @default.
- W2334305417 hasConceptScore W2334305417C199360897 @default.
- W2334305417 hasConceptScore W2334305417C202444582 @default.
- W2334305417 hasConceptScore W2334305417C2524010 @default.
- W2334305417 hasConceptScore W2334305417C2777027219 @default.
- W2334305417 hasConceptScore W2334305417C2778795570 @default.
- W2334305417 hasConceptScore W2334305417C3018781457 @default.
- W2334305417 hasConceptScore W2334305417C33923547 @default.
- W2334305417 hasConceptScore W2334305417C41008148 @default.
- W2334305417 hasConceptScore W2334305417C54732982 @default.
- W2334305417 hasConceptScore W2334305417C71924100 @default.
- W2334305417 hasConceptScore W2334305417C9376300 @default.
- W2334305417 hasConceptScore W2334305417C9652623 @default.
- W2334305417 hasIssue "3" @default.
- W2334305417 hasLocation W23343054171 @default.
- W2334305417 hasOpenAccess W2334305417 @default.
- W2334305417 hasPrimaryLocation W23343054171 @default.
- W2334305417 hasRelatedWork W1703119562 @default.
- W2334305417 hasRelatedWork W2032183060 @default.
- W2334305417 hasRelatedWork W2082954460 @default.
- W2334305417 hasRelatedWork W2093647500 @default.
- W2334305417 hasRelatedWork W2161300815 @default.
- W2334305417 hasRelatedWork W2334992469 @default.
- W2334305417 hasRelatedWork W2410897890 @default.
- W2334305417 hasRelatedWork W2963611923 @default.
- W2334305417 hasRelatedWork W3202903645 @default.
- W2334305417 hasRelatedWork W4280511095 @default.
- W2334305417 hasVolume "67" @default.
- W2334305417 isParatext "false" @default.
- W2334305417 isRetracted "false" @default.
- W2334305417 magId "2334305417" @default.
- W2334305417 workType "article" @default.