Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334402249> ?p ?o ?g. }
- W2334402249 abstract "Density functional theory (DFT) computations within the local-density approximation and generalized gradient approximation in pure form and with dispersion correction (GGA+D) were carried out to investigate the structural, electronic, and optical properties of $L$-aspartic acid anhydrous crystals. The electronic (band structure and density of states) and optical absorption properties were used to interpret the light absorption measurements we have performed in $L$-aspartic acid anhydrous crystalline powder at room temperature. We show the important role of the layered spatial disposition of $L$-aspartic acid molecules in anhydrous $L$-aspartic crystals to explain the observed electronic and optical properties. There is good agreement between the GGA+D calculated and experimental lattice parameters, with ($ensuremath{Delta}a$, $ensuremath{Delta}b$, $ensuremath{Delta}c$) deviations of ($0.029,ensuremath{-}0.023,ensuremath{-}0.024$) (units in AA{}). Mulliken [J. Chem. Phys. 23, 1833 (1955)] and Hirshfeld [Theor. Chim. Acta 44, 129 (1977)] population analyses were also performed to assess the degree of charge polarization in the zwitterion state of the $L$-aspartic acid molecules in the DFT converged crystal. The lowest-energy optical absorption peaks related to transitions between the top of the valence band and the bottom of the conduction band involve O 2$p$ valence states and C 1$p$ and O 2$p$ conduction states, with the carboxyl and COOH lateral chain group contributing significantly to the energy band gap. Among the calculated band gaps, the lowest GGA+D (4.49-eV) gap is smaller than the experimental estimate of 5.02 eV, as obtained by optical absorption. Such a wide-band-gap energy together with the small carrier effective masses estimated from band curvatures allows us to suggest that an $L$-aspartic acid anhydrous crystal can behave as a wide-gap semiconductor. A comparison of effective masses among directions parallel and perpendicular to the $L$-aspartic molecules layers reveals that charge transport must be favored in the former case. Finally, we also show that there is a strong optical anisotropy in the dielectric function of $L$-aspartic acid anhydrous crystals." @default.
- W2334402249 created "2016-06-24" @default.
- W2334402249 creator A5003069980 @default.
- W2334402249 creator A5018144533 @default.
- W2334402249 creator A5028213531 @default.
- W2334402249 creator A5033691408 @default.
- W2334402249 creator A5037140791 @default.
- W2334402249 creator A5042017533 @default.
- W2334402249 creator A5048718413 @default.
- W2334402249 creator A5054714237 @default.
- W2334402249 creator A5071396335 @default.
- W2334402249 date "2012-11-05" @default.
- W2334402249 modified "2023-09-24" @default.
- W2334402249 title "Optical absorption and DFT calculations in<mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML display=inline><mml:mi>L</mml:mi></mml:math>-aspartic acid anhydrous crystals: Charge carrier effective masses point to semiconducting behavior" @default.
- W2334402249 cites W1650728208 @default.
- W2334402249 cites W1964044039 @default.
- W2334402249 cites W1966750682 @default.
- W2334402249 cites W1970512969 @default.
- W2334402249 cites W1973070144 @default.
- W2334402249 cites W1974943505 @default.
- W2334402249 cites W1979006872 @default.
- W2334402249 cites W1979417190 @default.
- W2334402249 cites W1979907385 @default.
- W2334402249 cites W1981368803 @default.
- W2334402249 cites W1982555806 @default.
- W2334402249 cites W1983515614 @default.
- W2334402249 cites W1984599229 @default.
- W2334402249 cites W1986647570 @default.
- W2334402249 cites W1988858337 @default.
- W2334402249 cites W1989270132 @default.
- W2334402249 cites W1995070176 @default.
- W2334402249 cites W2002404280 @default.
- W2334402249 cites W2005790187 @default.
- W2334402249 cites W2009458392 @default.
- W2334402249 cites W2009768510 @default.
- W2334402249 cites W2011314414 @default.
- W2334402249 cites W2012507675 @default.
- W2334402249 cites W2016325227 @default.
- W2334402249 cites W2016788894 @default.
- W2334402249 cites W2017425597 @default.
- W2334402249 cites W2018887988 @default.
- W2334402249 cites W2020780402 @default.
- W2334402249 cites W2023941304 @default.
- W2334402249 cites W2025110978 @default.
- W2334402249 cites W2026907619 @default.
- W2334402249 cites W2030976617 @default.
- W2334402249 cites W2036113194 @default.
- W2334402249 cites W2036801653 @default.
- W2334402249 cites W2037260208 @default.
- W2334402249 cites W2038770127 @default.
- W2334402249 cites W2039989398 @default.
- W2334402249 cites W2042030103 @default.
- W2334402249 cites W2046156520 @default.
- W2334402249 cites W2047788433 @default.
- W2334402249 cites W2049079467 @default.
- W2334402249 cites W2050383651 @default.
- W2334402249 cites W2052637367 @default.
- W2334402249 cites W2053492096 @default.
- W2334402249 cites W2054285416 @default.
- W2334402249 cites W2055563809 @default.
- W2334402249 cites W2059885388 @default.
- W2334402249 cites W2060628089 @default.
- W2334402249 cites W2061527976 @default.
- W2334402249 cites W2071955309 @default.
- W2334402249 cites W2073234579 @default.
- W2334402249 cites W2121890399 @default.
- W2334402249 cites W2122439753 @default.
- W2334402249 cites W2147386722 @default.
- W2334402249 cites W2166244948 @default.
- W2334402249 cites W2167583743 @default.
- W2334402249 cites W2230728100 @default.
- W2334402249 cites W2333610689 @default.
- W2334402249 cites W2334295856 @default.
- W2334402249 cites W2567983209 @default.
- W2334402249 doi "https://doi.org/10.1103/physrevb.86.195201" @default.
- W2334402249 hasPublicationYear "2012" @default.
- W2334402249 type Work @default.
- W2334402249 sameAs 2334402249 @default.
- W2334402249 citedByCount "46" @default.
- W2334402249 countsByYear W23344022492013 @default.
- W2334402249 countsByYear W23344022492014 @default.
- W2334402249 countsByYear W23344022492015 @default.
- W2334402249 countsByYear W23344022492016 @default.
- W2334402249 countsByYear W23344022492017 @default.
- W2334402249 countsByYear W23344022492018 @default.
- W2334402249 countsByYear W23344022492019 @default.
- W2334402249 countsByYear W23344022492020 @default.
- W2334402249 countsByYear W23344022492021 @default.
- W2334402249 countsByYear W23344022492022 @default.
- W2334402249 countsByYear W23344022492023 @default.
- W2334402249 crossrefType "journal-article" @default.
- W2334402249 hasAuthorship W2334402249A5003069980 @default.
- W2334402249 hasAuthorship W2334402249A5018144533 @default.
- W2334402249 hasAuthorship W2334402249A5028213531 @default.
- W2334402249 hasAuthorship W2334402249A5033691408 @default.
- W2334402249 hasAuthorship W2334402249A5037140791 @default.
- W2334402249 hasAuthorship W2334402249A5042017533 @default.
- W2334402249 hasAuthorship W2334402249A5048718413 @default.
- W2334402249 hasAuthorship W2334402249A5054714237 @default.
- W2334402249 hasAuthorship W2334402249A5071396335 @default.