Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334667037> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2334667037 endingPage "949" @default.
- W2334667037 startingPage "939" @default.
- W2334667037 abstract "Our aim is to estimate the perspective-effected geometric distortion of a scene from a video feed. In contrast to most related previous work, in this task we are constrained to use low-level spatiotemporally local motion features only. This particular challenge arises in many semiautomatic surveillance systems that alert a human operator to potential abnormalities in the scene. Low-level spatiotemporally local motion features are sparse (and thus require comparatively little storage space) and sufficiently powerful in the context of video abnormality detection to reduce the need for human intervention by more than 100-fold. This paper introduces three significant contributions. First, we describe a dense algorithm for perspective estimation, which uses motion features to estimate the perspective distortion at each image locus and then polls all such local estimates to arrive at the globally best estimate. Second, we also present an alternative coarse algorithm that subdivides the image frame into blocks and uses motion features to derive block-specific motion characteristics and constrain the relationships between these characteristics, with the perspective estimate emerging as a result of a global optimization scheme. Third, we report the results of an evaluation using nine large sets acquired using existing closed-circuit television cameras, not installed specifically for the purposes of this paper. Our findings demonstrate that both proposed methods are successful, their accuracy matching that of human labeling using complete visual data (by the constraints of the setup unavailable to our algorithms)." @default.
- W2334667037 created "2016-06-24" @default.
- W2334667037 creator A5004852178 @default.
- W2334667037 creator A5020799762 @default.
- W2334667037 creator A5045540854 @default.
- W2334667037 date "2016-05-01" @default.
- W2334667037 modified "2023-09-26" @default.
- W2334667037 title "CCTV Scene Perspective Distortion Estimation From Low-Level Motion Features" @default.
- W2334667037 cites W1866975495 @default.
- W2334667037 cites W1890253021 @default.
- W2334667037 cites W2013661320 @default.
- W2334667037 cites W2017511448 @default.
- W2334667037 cites W2018525063 @default.
- W2334667037 cites W2067919418 @default.
- W2334667037 cites W2085250279 @default.
- W2334667037 cites W2096758544 @default.
- W2334667037 cites W2105340458 @default.
- W2334667037 cites W2113644556 @default.
- W2334667037 cites W2119605622 @default.
- W2334667037 cites W2121106610 @default.
- W2334667037 cites W2121350113 @default.
- W2334667037 cites W2143619117 @default.
- W2334667037 cites W2151103935 @default.
- W2334667037 cites W2151896334 @default.
- W2334667037 cites W2151992422 @default.
- W2334667037 cites W2155871590 @default.
- W2334667037 cites W2161841955 @default.
- W2334667037 cites W2161969291 @default.
- W2334667037 cites W2177274842 @default.
- W2334667037 cites W3100739091 @default.
- W2334667037 cites W3105635016 @default.
- W2334667037 cites W4298876134 @default.
- W2334667037 doi "https://doi.org/10.1109/tcsvt.2015.2424055" @default.
- W2334667037 hasPublicationYear "2016" @default.
- W2334667037 type Work @default.
- W2334667037 sameAs 2334667037 @default.
- W2334667037 citedByCount "10" @default.
- W2334667037 countsByYear W23346670372015 @default.
- W2334667037 countsByYear W23346670372018 @default.
- W2334667037 countsByYear W23346670372020 @default.
- W2334667037 countsByYear W23346670372022 @default.
- W2334667037 crossrefType "journal-article" @default.
- W2334667037 hasAuthorship W2334667037A5004852178 @default.
- W2334667037 hasAuthorship W2334667037A5020799762 @default.
- W2334667037 hasAuthorship W2334667037A5045540854 @default.
- W2334667037 hasConcept C10161872 @default.
- W2334667037 hasConcept C115961682 @default.
- W2334667037 hasConcept C126780896 @default.
- W2334667037 hasConcept C12713177 @default.
- W2334667037 hasConcept C154945302 @default.
- W2334667037 hasConcept C194257627 @default.
- W2334667037 hasConcept C2776257435 @default.
- W2334667037 hasConcept C2779989122 @default.
- W2334667037 hasConcept C31972630 @default.
- W2334667037 hasConcept C41008148 @default.
- W2334667037 hasConcept C76155785 @default.
- W2334667037 hasConceptScore W2334667037C10161872 @default.
- W2334667037 hasConceptScore W2334667037C115961682 @default.
- W2334667037 hasConceptScore W2334667037C126780896 @default.
- W2334667037 hasConceptScore W2334667037C12713177 @default.
- W2334667037 hasConceptScore W2334667037C154945302 @default.
- W2334667037 hasConceptScore W2334667037C194257627 @default.
- W2334667037 hasConceptScore W2334667037C2776257435 @default.
- W2334667037 hasConceptScore W2334667037C2779989122 @default.
- W2334667037 hasConceptScore W2334667037C31972630 @default.
- W2334667037 hasConceptScore W2334667037C41008148 @default.
- W2334667037 hasConceptScore W2334667037C76155785 @default.
- W2334667037 hasIssue "5" @default.
- W2334667037 hasLocation W23346670371 @default.
- W2334667037 hasOpenAccess W2334667037 @default.
- W2334667037 hasPrimaryLocation W23346670371 @default.
- W2334667037 hasRelatedWork W1995619081 @default.
- W2334667037 hasRelatedWork W2105514057 @default.
- W2334667037 hasRelatedWork W2145347751 @default.
- W2334667037 hasRelatedWork W2158319896 @default.
- W2334667037 hasRelatedWork W2414946225 @default.
- W2334667037 hasRelatedWork W2786887078 @default.
- W2334667037 hasRelatedWork W2989648550 @default.
- W2334667037 hasRelatedWork W2999630082 @default.
- W2334667037 hasRelatedWork W3190512878 @default.
- W2334667037 hasRelatedWork W348903442 @default.
- W2334667037 hasVolume "26" @default.
- W2334667037 isParatext "false" @default.
- W2334667037 isRetracted "false" @default.
- W2334667037 magId "2334667037" @default.
- W2334667037 workType "article" @default.