Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334798297> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2334798297 abstract "Abstract Modeling and prediction the formation permeability is a decisive step in the reservoir characterization as it concerns the sparseness of the row data with different scales from different sources. Efficiently combining the different sources of rock characteristics, especially core and well logs data, should lead to accurate estimation of permeability for other wells that have no core analysis. That results in accurate reservoir characterization, precise geospatial modeling and solid reservoir modeling. The most conventional approach for combining the core measurements, well log data into permeability modeling is the Multiple Linear Regression, which considers the least-square equation to estimate the coefficient of parameters in the linear modeling. However, there are many other algorithms that can be used for more accurate modeling and prediction of formation permeability. The other methods include: Multivariate Multiple Linear Regression, Generalized Additive Modeling, Multivariate Adaptive Regression Splines, Least-Angel Regression, Bayesian Generalized Linear Modeling, and Robust Linear Modeling. In this paper, review of all the aforementioned algorithms were provided along with full implementation on the permeability modeling given the well log and core data in a well from Rumaila dataset, from South Rumaila oil field in Iraq. The comparison between these agorithms were performed based on the root mean square prediction error of the predicted permeability after conducting data sampling and cross-validation. These algorithms can be carried out through several commercial software packages with limitations in terms of availability and computation time consuming. In this paper, we introduce a simplified implementation of all these algorithm through R, the most powerful open-source statistical computing language. Detailed R-codes were prepared for all algorithms." @default.
- W2334798297 created "2016-06-24" @default.
- W2334798297 creator A5027047123 @default.
- W2334798297 date "2016-05-02" @default.
- W2334798297 modified "2023-10-03" @default.
- W2334798297 title "Applied Geostatistical Reservoir Characterization in R: Review and Implementation of Permeability Estimation Modeling and Prediction Algorithms - Part II" @default.
- W2334798297 cites W1981457167 @default.
- W2334798297 cites W1996877265 @default.
- W2334798297 cites W2016680212 @default.
- W2334798297 cites W2024046085 @default.
- W2334798297 cites W2034303231 @default.
- W2334798297 cites W2052319596 @default.
- W2334798297 cites W2085014703 @default.
- W2334798297 cites W2090525252 @default.
- W2334798297 cites W2102201073 @default.
- W2334798297 cites W2118845193 @default.
- W2334798297 cites W2326962180 @default.
- W2334798297 cites W2328495118 @default.
- W2334798297 cites W2330062918 @default.
- W2334798297 cites W2333431616 @default.
- W2334798297 cites W4300515633 @default.
- W2334798297 cites W1968763486 @default.
- W2334798297 doi "https://doi.org/10.4043/26932-ms" @default.
- W2334798297 hasPublicationYear "2016" @default.
- W2334798297 type Work @default.
- W2334798297 sameAs 2334798297 @default.
- W2334798297 citedByCount "3" @default.
- W2334798297 countsByYear W23347982972018 @default.
- W2334798297 countsByYear W23347982972023 @default.
- W2334798297 crossrefType "proceedings-article" @default.
- W2334798297 hasAuthorship W2334798297A5027047123 @default.
- W2334798297 hasConcept C105795698 @default.
- W2334798297 hasConcept C11413529 @default.
- W2334798297 hasConcept C119857082 @default.
- W2334798297 hasConcept C124101348 @default.
- W2334798297 hasConcept C127413603 @default.
- W2334798297 hasConcept C139945424 @default.
- W2334798297 hasConcept C14641988 @default.
- W2334798297 hasConcept C152877465 @default.
- W2334798297 hasConcept C161584116 @default.
- W2334798297 hasConcept C2778668878 @default.
- W2334798297 hasConcept C33923547 @default.
- W2334798297 hasConcept C41008148 @default.
- W2334798297 hasConcept C44882253 @default.
- W2334798297 hasConcept C48921125 @default.
- W2334798297 hasConcept C64946054 @default.
- W2334798297 hasConcept C78762247 @default.
- W2334798297 hasConceptScore W2334798297C105795698 @default.
- W2334798297 hasConceptScore W2334798297C11413529 @default.
- W2334798297 hasConceptScore W2334798297C119857082 @default.
- W2334798297 hasConceptScore W2334798297C124101348 @default.
- W2334798297 hasConceptScore W2334798297C127413603 @default.
- W2334798297 hasConceptScore W2334798297C139945424 @default.
- W2334798297 hasConceptScore W2334798297C14641988 @default.
- W2334798297 hasConceptScore W2334798297C152877465 @default.
- W2334798297 hasConceptScore W2334798297C161584116 @default.
- W2334798297 hasConceptScore W2334798297C2778668878 @default.
- W2334798297 hasConceptScore W2334798297C33923547 @default.
- W2334798297 hasConceptScore W2334798297C41008148 @default.
- W2334798297 hasConceptScore W2334798297C44882253 @default.
- W2334798297 hasConceptScore W2334798297C48921125 @default.
- W2334798297 hasConceptScore W2334798297C64946054 @default.
- W2334798297 hasConceptScore W2334798297C78762247 @default.
- W2334798297 hasLocation W23347982971 @default.
- W2334798297 hasOpenAccess W2334798297 @default.
- W2334798297 hasPrimaryLocation W23347982971 @default.
- W2334798297 hasRelatedWork W1572988339 @default.
- W2334798297 hasRelatedWork W1991715599 @default.
- W2334798297 hasRelatedWork W2065439233 @default.
- W2334798297 hasRelatedWork W2361657778 @default.
- W2334798297 hasRelatedWork W2366651177 @default.
- W2334798297 hasRelatedWork W2790053847 @default.
- W2334798297 hasRelatedWork W2889522799 @default.
- W2334798297 hasRelatedWork W3094901028 @default.
- W2334798297 hasRelatedWork W3172887576 @default.
- W2334798297 hasRelatedWork W3199622279 @default.
- W2334798297 isParatext "false" @default.
- W2334798297 isRetracted "false" @default.
- W2334798297 magId "2334798297" @default.
- W2334798297 workType "article" @default.