Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334803479> ?p ?o ?g. }
- W2334803479 endingPage "1661" @default.
- W2334803479 startingPage "1652" @default.
- W2334803479 abstract "Edge concentration in dense bipartite graphs is a technique for reducing the numbers of edges and edge crossings in graph drawings. The conventional method proposed by Newbery is designed to reduce the number of edge crossings; however, it does not always reduce the number of edges. Reducing the number of edges is also an important factor for improving the readability of graphs. However, no edge concentration method with the explicit purpose of minimizing the number of edges has previously been studied. In this study, we propose a novel, efficient heuristic method for minimizing the number of edges during edge concentration. We demonstrate the efficiency of the proposed method via a comparison using randomly generated graphs. We find that Newbery's method fails to reduce the number of edges when the number of vertices is large. By contrast, the proposed method achieves an average compression ratio of 47 to 82 percent for all generated graph groups. We also present a real-world application of the proposed method using a causality network of biological data." @default.
- W2334803479 created "2016-06-24" @default.
- W2334803479 creator A5006933062 @default.
- W2334803479 creator A5069861564 @default.
- W2334803479 creator A5078567249 @default.
- W2334803479 creator A5089319571 @default.
- W2334803479 date "2016-06-01" @default.
- W2334803479 modified "2023-10-01" @default.
- W2334803479 title "Minimizing the Number of Edges via Edge Concentration in Dense Layered Graphs" @default.
- W2334803479 cites W1502938161 @default.
- W2334803479 cites W1513389131 @default.
- W2334803479 cites W1578657583 @default.
- W2334803479 cites W1961478032 @default.
- W2334803479 cites W1978024959 @default.
- W2334803479 cites W1978394966 @default.
- W2334803479 cites W1979246995 @default.
- W2334803479 cites W1984849634 @default.
- W2334803479 cites W1992709202 @default.
- W2334803479 cites W2010605207 @default.
- W2334803479 cites W2018616316 @default.
- W2334803479 cites W2038455086 @default.
- W2334803479 cites W2058594920 @default.
- W2334803479 cites W2060538865 @default.
- W2334803479 cites W2071353749 @default.
- W2334803479 cites W2083372419 @default.
- W2334803479 cites W2094450647 @default.
- W2334803479 cites W2107384560 @default.
- W2334803479 cites W2117088188 @default.
- W2334803479 cites W2119845929 @default.
- W2334803479 cites W2141752622 @default.
- W2334803479 cites W2145640629 @default.
- W2334803479 cites W2148056538 @default.
- W2334803479 cites W2153472243 @default.
- W2334803479 cites W2155493403 @default.
- W2334803479 cites W2162788273 @default.
- W2334803479 cites W2164327423 @default.
- W2334803479 cites W2167036627 @default.
- W2334803479 cites W2171612826 @default.
- W2334803479 cites W2324827308 @default.
- W2334803479 cites W3103199319 @default.
- W2334803479 cites W4238557523 @default.
- W2334803479 cites W4253380179 @default.
- W2334803479 doi "https://doi.org/10.1109/tvcg.2016.2534519" @default.
- W2334803479 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26955033" @default.
- W2334803479 hasPublicationYear "2016" @default.
- W2334803479 type Work @default.
- W2334803479 sameAs 2334803479 @default.
- W2334803479 citedByCount "10" @default.
- W2334803479 countsByYear W23348034792017 @default.
- W2334803479 countsByYear W23348034792018 @default.
- W2334803479 countsByYear W23348034792019 @default.
- W2334803479 countsByYear W23348034792020 @default.
- W2334803479 countsByYear W23348034792021 @default.
- W2334803479 countsByYear W23348034792023 @default.
- W2334803479 crossrefType "journal-article" @default.
- W2334803479 hasAuthorship W2334803479A5006933062 @default.
- W2334803479 hasAuthorship W2334803479A5069861564 @default.
- W2334803479 hasAuthorship W2334803479A5078567249 @default.
- W2334803479 hasAuthorship W2334803479A5089319571 @default.
- W2334803479 hasConcept C100107663 @default.
- W2334803479 hasConcept C103257674 @default.
- W2334803479 hasConcept C11413529 @default.
- W2334803479 hasConcept C114614502 @default.
- W2334803479 hasConcept C132525143 @default.
- W2334803479 hasConcept C154945302 @default.
- W2334803479 hasConcept C162307627 @default.
- W2334803479 hasConcept C173801870 @default.
- W2334803479 hasConcept C17762858 @default.
- W2334803479 hasConcept C197657726 @default.
- W2334803479 hasConcept C203776342 @default.
- W2334803479 hasConcept C33923547 @default.
- W2334803479 hasConcept C41008148 @default.
- W2334803479 hasConcept C43517604 @default.
- W2334803479 hasConcept C80444323 @default.
- W2334803479 hasConceptScore W2334803479C100107663 @default.
- W2334803479 hasConceptScore W2334803479C103257674 @default.
- W2334803479 hasConceptScore W2334803479C11413529 @default.
- W2334803479 hasConceptScore W2334803479C114614502 @default.
- W2334803479 hasConceptScore W2334803479C132525143 @default.
- W2334803479 hasConceptScore W2334803479C154945302 @default.
- W2334803479 hasConceptScore W2334803479C162307627 @default.
- W2334803479 hasConceptScore W2334803479C173801870 @default.
- W2334803479 hasConceptScore W2334803479C17762858 @default.
- W2334803479 hasConceptScore W2334803479C197657726 @default.
- W2334803479 hasConceptScore W2334803479C203776342 @default.
- W2334803479 hasConceptScore W2334803479C33923547 @default.
- W2334803479 hasConceptScore W2334803479C41008148 @default.
- W2334803479 hasConceptScore W2334803479C43517604 @default.
- W2334803479 hasConceptScore W2334803479C80444323 @default.
- W2334803479 hasFunder F4320320912 @default.
- W2334803479 hasFunder F4320337437 @default.
- W2334803479 hasIssue "6" @default.
- W2334803479 hasLocation W23348034791 @default.
- W2334803479 hasLocation W23348034792 @default.
- W2334803479 hasOpenAccess W2334803479 @default.
- W2334803479 hasPrimaryLocation W23348034791 @default.
- W2334803479 hasRelatedWork W1725047827 @default.
- W2334803479 hasRelatedWork W2032987509 @default.