Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334877585> ?p ?o ?g. }
- W2334877585 endingPage "78" @default.
- W2334877585 startingPage "65" @default.
- W2334877585 abstract "CR Climate Research Contact the journal Facebook Twitter RSS Mailing List Subscribe to our mailing list via Mailchimp HomeLatest VolumeAbout the JournalEditorsSpecials CR 55:65-78 (2012) - DOI: https://doi.org/10.3354/cr01113 Effect of temporal and spatial scales of weather data on crop yield forecasts Sanai Li, Adrian M. Tompkins* Earth System Physics Section, The Abdus Salam ICTP, Trieste, Italy *Corresponding author. Email: tompkins@ictp.it ABSTRACT: A dynamical crop model is used to understand the statistical relationship between climate and wheat yield in China. Using 16 years of regional yield data and a gridded database of climate data, it is shown that a clear statistical relationship is lacking in many points between seasonal mean climate anomalies and yield. Dynamical simulations of yield using daily climate data to drive the crop model demonstrate that this is partly due to the strongly nonlinear relationship between climate and yield, which can thus hamper the application of linear statistical models for forecasting and planning purposes. A case study using individual station data emphasized how local variations in climate could be substantial, and could have marked effects on simulated yields. Due to the memory effect of the soil moisture, little difference was found when driving the crop model with 5 d (pentad) temporally averaged rainfall data. This result is relevant for crop studies, as reliable pentad satellite-based rainfall retrievals are available for a far longer period than daily data. The highly skewed distribution of rainfall implies 10 d or longer averaging of rainfall strongly impacts crop yield, although temperature, a spatially smoother field, could be averaged for dekads or even monthly. Spatially averaging the driving climate data shows that the crop model skill in yield forecasting improves as the spatial scale of weather data increased from 2° × 2° to 0.5° × 0.5°, even if point-wise sampling errors are greater. KEY WORDS: Dynamical crop model · Temporal and spatial scale · Crop forecasting Full text in pdf format PreviousNextCite this article as: Li S, Tompkins AM (2012) Effect of temporal and spatial scales of weather data on crop yield forecasts. Clim Res 55:65-78. https://doi.org/10.3354/cr01113 Export citation RSS - Facebook - Tweet - linkedIn Cited by Published in CR Vol. 55, No. 1. Online publication date: November 15, 2012 Print ISSN: 0936-577X; Online ISSN: 1616-1572 Copyright © 2012 Inter-Research." @default.
- W2334877585 created "2016-06-24" @default.
- W2334877585 creator A5004612099 @default.
- W2334877585 creator A5026912785 @default.
- W2334877585 date "2012-11-15" @default.
- W2334877585 modified "2023-10-17" @default.
- W2334877585 title "Effect of temporal and spatial scales of weather data on crop yield forecasts" @default.
- W2334877585 cites W1505725514 @default.
- W2334877585 cites W1512848913 @default.
- W2334877585 cites W1964264838 @default.
- W2334877585 cites W1969874572 @default.
- W2334877585 cites W1985243025 @default.
- W2334877585 cites W2011425404 @default.
- W2334877585 cites W2015525638 @default.
- W2334877585 cites W2028671789 @default.
- W2334877585 cites W2029390972 @default.
- W2334877585 cites W2054125239 @default.
- W2334877585 cites W2056251274 @default.
- W2334877585 cites W2058218129 @default.
- W2334877585 cites W2062030462 @default.
- W2334877585 cites W2062539120 @default.
- W2334877585 cites W2068138294 @default.
- W2334877585 cites W2083407963 @default.
- W2334877585 cites W2096533595 @default.
- W2334877585 cites W2099527346 @default.
- W2334877585 cites W2101394945 @default.
- W2334877585 cites W2108054633 @default.
- W2334877585 cites W2108182541 @default.
- W2334877585 cites W2121745948 @default.
- W2334877585 cites W2122070381 @default.
- W2334877585 cites W2143357393 @default.
- W2334877585 cites W2150035466 @default.
- W2334877585 cites W2151423853 @default.
- W2334877585 cites W2160804315 @default.
- W2334877585 cites W2174673989 @default.
- W2334877585 cites W2176956584 @default.
- W2334877585 cites W2371953296 @default.
- W2334877585 cites W2490465338 @default.
- W2334877585 cites W37952090 @default.
- W2334877585 doi "https://doi.org/10.3354/cr01113" @default.
- W2334877585 hasPublicationYear "2012" @default.
- W2334877585 type Work @default.
- W2334877585 sameAs 2334877585 @default.
- W2334877585 citedByCount "2" @default.
- W2334877585 countsByYear W23348775852016 @default.
- W2334877585 countsByYear W23348775852017 @default.
- W2334877585 crossrefType "journal-article" @default.
- W2334877585 hasAuthorship W2334877585A5004612099 @default.
- W2334877585 hasAuthorship W2334877585A5026912785 @default.
- W2334877585 hasBestOaLocation W23348775851 @default.
- W2334877585 hasConcept C105795698 @default.
- W2334877585 hasConcept C126343540 @default.
- W2334877585 hasConcept C127313418 @default.
- W2334877585 hasConcept C127413603 @default.
- W2334877585 hasConcept C132651083 @default.
- W2334877585 hasConcept C134121241 @default.
- W2334877585 hasConcept C137580998 @default.
- W2334877585 hasConcept C146978453 @default.
- W2334877585 hasConcept C153294291 @default.
- W2334877585 hasConcept C158709400 @default.
- W2334877585 hasConcept C168754636 @default.
- W2334877585 hasConcept C18903297 @default.
- W2334877585 hasConcept C191897082 @default.
- W2334877585 hasConcept C192562407 @default.
- W2334877585 hasConcept C19269812 @default.
- W2334877585 hasConcept C205649164 @default.
- W2334877585 hasConcept C2777016058 @default.
- W2334877585 hasConcept C33923547 @default.
- W2334877585 hasConcept C39432304 @default.
- W2334877585 hasConcept C49204034 @default.
- W2334877585 hasConcept C6557445 @default.
- W2334877585 hasConcept C86803240 @default.
- W2334877585 hasConcept C91586092 @default.
- W2334877585 hasConcept C97137747 @default.
- W2334877585 hasConceptScore W2334877585C105795698 @default.
- W2334877585 hasConceptScore W2334877585C126343540 @default.
- W2334877585 hasConceptScore W2334877585C127313418 @default.
- W2334877585 hasConceptScore W2334877585C127413603 @default.
- W2334877585 hasConceptScore W2334877585C132651083 @default.
- W2334877585 hasConceptScore W2334877585C134121241 @default.
- W2334877585 hasConceptScore W2334877585C137580998 @default.
- W2334877585 hasConceptScore W2334877585C146978453 @default.
- W2334877585 hasConceptScore W2334877585C153294291 @default.
- W2334877585 hasConceptScore W2334877585C158709400 @default.
- W2334877585 hasConceptScore W2334877585C168754636 @default.
- W2334877585 hasConceptScore W2334877585C18903297 @default.
- W2334877585 hasConceptScore W2334877585C191897082 @default.
- W2334877585 hasConceptScore W2334877585C192562407 @default.
- W2334877585 hasConceptScore W2334877585C19269812 @default.
- W2334877585 hasConceptScore W2334877585C205649164 @default.
- W2334877585 hasConceptScore W2334877585C2777016058 @default.
- W2334877585 hasConceptScore W2334877585C33923547 @default.
- W2334877585 hasConceptScore W2334877585C39432304 @default.
- W2334877585 hasConceptScore W2334877585C49204034 @default.
- W2334877585 hasConceptScore W2334877585C6557445 @default.
- W2334877585 hasConceptScore W2334877585C86803240 @default.
- W2334877585 hasConceptScore W2334877585C91586092 @default.
- W2334877585 hasConceptScore W2334877585C97137747 @default.