Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334916114> ?p ?o ?g. }
- W2334916114 endingPage "4279" @default.
- W2334916114 startingPage "4271" @default.
- W2334916114 abstract "Iron-based oxygen carriers (OCs) have been the focus of studies at the Center for Applied Energy Research (CAER), University of Kentucky, for the application of chemical looping combustion (CLC) to solid fuels. Freeze granulation (FG) was chosen as a method to produce Fe2O3 on an alumina (Al2O3) OC of appropriate particle size for separation from ash and reactivity to oxidize a coal char in a bench-scale fluid-bed reactor. The purpose of this study was to gain an understanding of the iron oxide transformations, which would occur under CLC fuel reactor conditions, including gas compositions similar to CLC syngas concentrations. A FG OC composed of 50:50 Fe2O3/Al2O3 and a commercial Fe2O3 powder were tested in a thermal analyzer equipped with a water vapor (WV) furnace and a WV generator and coupled to a mass spectrometer (TGMS). This TGMS system allowed for testing of OCs under simulated CLC reducing reactor conditions containing WV. Two reducing gas concentrations consistent with potential syngas in a CLC reactor and a single oxidation gas mixture were used with and without 10% WV in the balance gas for comparison. The two OCs were also tested in the individual components of the simulated syngas, 10% H2 in Ar and 15% CO in Ar. The reaction temperature was 950 °C, and five redox cycles were completed for each test. Samples from before and after TG testing were analyzed by X-ray diffraction (XRD) to determine the forms of iron. A comparison of weight loss/gain during redox under both reducing gas concentrations, wet and dry, indicated the FG OC had the same oxygen capacity as indicated by the weight loss under both conditions. In contrast, the Fe2O3 powder weight loss (oxygen-transfer capacity) was half the amount under wet gases than dry. Both FG OC and Fe2O3 powder had significantly lower maximum reaction rates of redox in wet gases, and the concentration of reducing gases significantly affected the maximum reduction rates. A total of 10% WV in argon was found to be capable of the oxidation of Fe3O4, FeO, and the reduced FG OC under test conditions, which helped explain the slow reaction rates in wet reduction gas. These reduced materials were fully reoxidized to Fe2O3 with WV alone. The rates of oxidation and their effect on the overall reduction rates in gases containing WV are discussed. XRD results provided insight into the OC reduction and explained the difference in weight loss seen in wet and dry gases. The end product of Fe2O3 reduction in dry gases was Fe/FeO, and under wet conditions, Fe3O4 was the primary iron oxide identified." @default.
- W2334916114 created "2016-06-24" @default.
- W2334916114 creator A5037452883 @default.
- W2334916114 creator A5055349808 @default.
- W2334916114 creator A5075056853 @default.
- W2334916114 creator A5085957279 @default.
- W2334916114 date "2011-09-20" @default.
- W2334916114 modified "2023-09-24" @default.
- W2334916114 title "Effect of Water Vapor on the Redox Reactions of Iron-Based Oxygen Carriers for Chemical Looping Combustion" @default.
- W2334916114 cites W1581915606 @default.
- W2334916114 cites W1966616946 @default.
- W2334916114 cites W1971785941 @default.
- W2334916114 cites W1974720175 @default.
- W2334916114 cites W1976059953 @default.
- W2334916114 cites W1976875779 @default.
- W2334916114 cites W1977664034 @default.
- W2334916114 cites W1978554018 @default.
- W2334916114 cites W1980070811 @default.
- W2334916114 cites W1980854042 @default.
- W2334916114 cites W1984728490 @default.
- W2334916114 cites W1985790734 @default.
- W2334916114 cites W2001471972 @default.
- W2334916114 cites W2004935815 @default.
- W2334916114 cites W2007010315 @default.
- W2334916114 cites W2007370794 @default.
- W2334916114 cites W2008553369 @default.
- W2334916114 cites W2018885427 @default.
- W2334916114 cites W2020745115 @default.
- W2334916114 cites W2034239975 @default.
- W2334916114 cites W2043023719 @default.
- W2334916114 cites W2044501389 @default.
- W2334916114 cites W2046580645 @default.
- W2334916114 cites W2050024117 @default.
- W2334916114 cites W2051041140 @default.
- W2334916114 cites W2054947379 @default.
- W2334916114 cites W2063222878 @default.
- W2334916114 cites W2065189154 @default.
- W2334916114 cites W2065486200 @default.
- W2334916114 cites W2066906730 @default.
- W2334916114 cites W2074042485 @default.
- W2334916114 cites W2074402395 @default.
- W2334916114 cites W2085339231 @default.
- W2334916114 cites W2088734505 @default.
- W2334916114 cites W2093953037 @default.
- W2334916114 cites W2107301471 @default.
- W2334916114 doi "https://doi.org/10.1021/ef2008198" @default.
- W2334916114 hasPublicationYear "2011" @default.
- W2334916114 type Work @default.
- W2334916114 sameAs 2334916114 @default.
- W2334916114 citedByCount "12" @default.
- W2334916114 countsByYear W23349161142012 @default.
- W2334916114 countsByYear W23349161142013 @default.
- W2334916114 countsByYear W23349161142014 @default.
- W2334916114 countsByYear W23349161142015 @default.
- W2334916114 countsByYear W23349161142016 @default.
- W2334916114 countsByYear W23349161142018 @default.
- W2334916114 countsByYear W23349161142019 @default.
- W2334916114 countsByYear W23349161142020 @default.
- W2334916114 countsByYear W23349161142021 @default.
- W2334916114 countsByYear W23349161142022 @default.
- W2334916114 crossrefType "journal-article" @default.
- W2334916114 hasAuthorship W2334916114A5037452883 @default.
- W2334916114 hasAuthorship W2334916114A5055349808 @default.
- W2334916114 hasAuthorship W2334916114A5075056853 @default.
- W2334916114 hasAuthorship W2334916114A5085957279 @default.
- W2334916114 hasConcept C105923489 @default.
- W2334916114 hasConcept C113196181 @default.
- W2334916114 hasConcept C127413603 @default.
- W2334916114 hasConcept C158089330 @default.
- W2334916114 hasConcept C178790620 @default.
- W2334916114 hasConcept C179104552 @default.
- W2334916114 hasConcept C185592680 @default.
- W2334916114 hasConcept C194439259 @default.
- W2334916114 hasConcept C196832758 @default.
- W2334916114 hasConcept C24763909 @default.
- W2334916114 hasConcept C2777697756 @default.
- W2334916114 hasConcept C2779970684 @default.
- W2334916114 hasConcept C42360764 @default.
- W2334916114 hasConcept C43617362 @default.
- W2334916114 hasConcept C512968161 @default.
- W2334916114 hasConcept C540031477 @default.
- W2334916114 hasConcept C55904794 @default.
- W2334916114 hasConceptScore W2334916114C105923489 @default.
- W2334916114 hasConceptScore W2334916114C113196181 @default.
- W2334916114 hasConceptScore W2334916114C127413603 @default.
- W2334916114 hasConceptScore W2334916114C158089330 @default.
- W2334916114 hasConceptScore W2334916114C178790620 @default.
- W2334916114 hasConceptScore W2334916114C179104552 @default.
- W2334916114 hasConceptScore W2334916114C185592680 @default.
- W2334916114 hasConceptScore W2334916114C194439259 @default.
- W2334916114 hasConceptScore W2334916114C196832758 @default.
- W2334916114 hasConceptScore W2334916114C24763909 @default.
- W2334916114 hasConceptScore W2334916114C2777697756 @default.
- W2334916114 hasConceptScore W2334916114C2779970684 @default.
- W2334916114 hasConceptScore W2334916114C42360764 @default.
- W2334916114 hasConceptScore W2334916114C43617362 @default.
- W2334916114 hasConceptScore W2334916114C512968161 @default.
- W2334916114 hasConceptScore W2334916114C540031477 @default.