Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334927863> ?p ?o ?g. }
- W2334927863 abstract "The maximum likelihood (ML) and maximum a posteriori (MAP) estimation techniques are widely used to address the direction-of-arrival (DOA) estimation problems, an important topic in sensor array processing. Conventionally the ML estimators in the DOA estimation context assume the sensor noise to follow a Gaussian distribution. In real-life application, however, this assumption is sometimes not valid, and it is often more accurate to model the noise as a non-Gaussian process. In this paper we derive an iterative ML as well as an iterative MAP estimation algorithm for the DOA estimation problem under the spherically invariant random process noise assumption, one of the most popular non-Gaussian models, especially in the radar context. Numerical simulation results are provided to assess our proposed algorithms and to show their advantage in terms of performance over the conventional ML algorithm." @default.
- W2334927863 created "2016-06-24" @default.
- W2334927863 creator A5001481378 @default.
- W2334927863 creator A5006651636 @default.
- W2334927863 creator A5052423002 @default.
- W2334927863 date "2016-03-20" @default.
- W2334927863 modified "2023-09-30" @default.
- W2334927863 title "Maximum Likelihood and Maximum A Posteriori Direction-of-Arrival Estimation in the Presence of SIRP Noise" @default.
- W2334927863 cites W1667165204 @default.
- W2334927863 cites W1899196398 @default.
- W2334927863 cites W1992511687 @default.
- W2334927863 cites W1995319803 @default.
- W2334927863 cites W2001621552 @default.
- W2334927863 cites W2053092311 @default.
- W2334927863 cites W2106265255 @default.
- W2334927863 cites W2109363365 @default.
- W2334927863 cites W2113007636 @default.
- W2334927863 cites W2118522007 @default.
- W2334927863 cites W2130202098 @default.
- W2334927863 cites W2131826810 @default.
- W2334927863 cites W2145957927 @default.
- W2334927863 cites W2149755721 @default.
- W2334927863 cites W2158541895 @default.
- W2334927863 cites W2161503240 @default.
- W2334927863 cites W2949295571 @default.
- W2334927863 cites W2952350176 @default.
- W2334927863 cites W86791300 @default.
- W2334927863 hasPublicationYear "2016" @default.
- W2334927863 type Work @default.
- W2334927863 sameAs 2334927863 @default.
- W2334927863 citedByCount "2" @default.
- W2334927863 countsByYear W23349278632016 @default.
- W2334927863 countsByYear W23349278632019 @default.
- W2334927863 crossrefType "proceedings-article" @default.
- W2334927863 hasAuthorship W2334927863A5001481378 @default.
- W2334927863 hasAuthorship W2334927863A5006651636 @default.
- W2334927863 hasAuthorship W2334927863A5052423002 @default.
- W2334927863 hasBestOaLocation W23349278632 @default.
- W2334927863 hasConcept C104267543 @default.
- W2334927863 hasConcept C105795698 @default.
- W2334927863 hasConcept C11413529 @default.
- W2334927863 hasConcept C115961682 @default.
- W2334927863 hasConcept C121332964 @default.
- W2334927863 hasConcept C151730666 @default.
- W2334927863 hasConcept C154945302 @default.
- W2334927863 hasConcept C159694833 @default.
- W2334927863 hasConcept C163716315 @default.
- W2334927863 hasConcept C167928553 @default.
- W2334927863 hasConcept C172051844 @default.
- W2334927863 hasConcept C185429906 @default.
- W2334927863 hasConcept C191462741 @default.
- W2334927863 hasConcept C21822782 @default.
- W2334927863 hasConcept C2778545087 @default.
- W2334927863 hasConcept C2779343474 @default.
- W2334927863 hasConcept C33923547 @default.
- W2334927863 hasConcept C41008148 @default.
- W2334927863 hasConcept C4199805 @default.
- W2334927863 hasConcept C49781872 @default.
- W2334927863 hasConcept C554190296 @default.
- W2334927863 hasConcept C62520636 @default.
- W2334927863 hasConcept C76155785 @default.
- W2334927863 hasConcept C86803240 @default.
- W2334927863 hasConcept C9810830 @default.
- W2334927863 hasConcept C99498987 @default.
- W2334927863 hasConceptScore W2334927863C104267543 @default.
- W2334927863 hasConceptScore W2334927863C105795698 @default.
- W2334927863 hasConceptScore W2334927863C11413529 @default.
- W2334927863 hasConceptScore W2334927863C115961682 @default.
- W2334927863 hasConceptScore W2334927863C121332964 @default.
- W2334927863 hasConceptScore W2334927863C151730666 @default.
- W2334927863 hasConceptScore W2334927863C154945302 @default.
- W2334927863 hasConceptScore W2334927863C159694833 @default.
- W2334927863 hasConceptScore W2334927863C163716315 @default.
- W2334927863 hasConceptScore W2334927863C167928553 @default.
- W2334927863 hasConceptScore W2334927863C172051844 @default.
- W2334927863 hasConceptScore W2334927863C185429906 @default.
- W2334927863 hasConceptScore W2334927863C191462741 @default.
- W2334927863 hasConceptScore W2334927863C21822782 @default.
- W2334927863 hasConceptScore W2334927863C2778545087 @default.
- W2334927863 hasConceptScore W2334927863C2779343474 @default.
- W2334927863 hasConceptScore W2334927863C33923547 @default.
- W2334927863 hasConceptScore W2334927863C41008148 @default.
- W2334927863 hasConceptScore W2334927863C4199805 @default.
- W2334927863 hasConceptScore W2334927863C49781872 @default.
- W2334927863 hasConceptScore W2334927863C554190296 @default.
- W2334927863 hasConceptScore W2334927863C62520636 @default.
- W2334927863 hasConceptScore W2334927863C76155785 @default.
- W2334927863 hasConceptScore W2334927863C86803240 @default.
- W2334927863 hasConceptScore W2334927863C9810830 @default.
- W2334927863 hasConceptScore W2334927863C99498987 @default.
- W2334927863 hasLocation W23349278631 @default.
- W2334927863 hasLocation W23349278632 @default.
- W2334927863 hasLocation W23349278633 @default.
- W2334927863 hasOpenAccess W2334927863 @default.
- W2334927863 hasPrimaryLocation W23349278631 @default.
- W2334927863 hasRelatedWork W1503532423 @default.
- W2334927863 hasRelatedWork W1967494390 @default.
- W2334927863 hasRelatedWork W2102949087 @default.
- W2334927863 hasRelatedWork W2113767069 @default.
- W2334927863 hasRelatedWork W2129338728 @default.