Matches in SemOpenAlex for { <https://semopenalex.org/work/W2334943959> ?p ?o ?g. }
- W2334943959 endingPage "1012" @default.
- W2334943959 startingPage "1000" @default.
- W2334943959 abstract "Radiation therapy is an integral part of cancer treatment, but to date it remains highly manual. Plans are created through optimization of dose volume objectives that specify intent to minimize, maximize, or achieve a prescribed dose level to clinical targets and organs. Optimization is NP-hard, requiring highly iterative and manual initialization procedures. We present a proof-of-concept for a method to automatically infer the radiation dose directly from the patient's treatment planning image based on a database of previous patients with corresponding clinical treatment plans. Our method uses regression forests augmented with density estimation over the most informative features to learn an automatic atlas-selection metric that is tailored to dose prediction. We validate our approach on 276 patients from 3 clinical treatment plan sites (whole breast, breast cavity, and prostate), with an overall dose prediction accuracies of 78.68%, 64.76%, 86.83% under the Gamma metric." @default.
- W2334943959 created "2016-06-24" @default.
- W2334943959 creator A5018452517 @default.
- W2334943959 creator A5044425152 @default.
- W2334943959 date "2016-04-01" @default.
- W2334943959 modified "2023-10-17" @default.
- W2334943959 title "Contextual Atlas Regression Forests: Multiple-Atlas-Based Automated Dose Prediction in Radiation Therapy" @default.
- W2334943959 cites W125636640 @default.
- W2334943959 cites W13188192 @default.
- W2334943959 cites W1484228140 @default.
- W2334943959 cites W1508354893 @default.
- W2334943959 cites W1540871397 @default.
- W2334943959 cites W1578285471 @default.
- W2334943959 cites W193740922 @default.
- W2334943959 cites W1963650567 @default.
- W2334943959 cites W1963932209 @default.
- W2334943959 cites W1967121735 @default.
- W2334943959 cites W1980956836 @default.
- W2334943959 cites W1987419782 @default.
- W2334943959 cites W1987869189 @default.
- W2334943959 cites W1991113069 @default.
- W2334943959 cites W2000986084 @default.
- W2334943959 cites W2001141328 @default.
- W2334943959 cites W2018757344 @default.
- W2334943959 cites W2032111846 @default.
- W2334943959 cites W2032377318 @default.
- W2334943959 cites W2035188186 @default.
- W2334943959 cites W2043054410 @default.
- W2334943959 cites W2047896044 @default.
- W2334943959 cites W2056153501 @default.
- W2334943959 cites W2057693145 @default.
- W2334943959 cites W2058224795 @default.
- W2334943959 cites W2061554433 @default.
- W2334943959 cites W2077782417 @default.
- W2334943959 cites W2115588799 @default.
- W2334943959 cites W2123312079 @default.
- W2334943959 cites W2131034218 @default.
- W2334943959 cites W2133460059 @default.
- W2334943959 cites W2138339175 @default.
- W2334943959 cites W2144293828 @default.
- W2334943959 cites W2146917638 @default.
- W2334943959 cites W2146937987 @default.
- W2334943959 cites W2160978182 @default.
- W2334943959 cites W2161501889 @default.
- W2334943959 cites W2164001879 @default.
- W2334943959 cites W2164718209 @default.
- W2334943959 cites W2168985433 @default.
- W2334943959 cites W2172156083 @default.
- W2334943959 cites W2266768517 @default.
- W2334943959 cites W2911964244 @default.
- W2334943959 cites W3104604121 @default.
- W2334943959 doi "https://doi.org/10.1109/tmi.2015.2505188" @default.
- W2334943959 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26660888" @default.
- W2334943959 hasPublicationYear "2016" @default.
- W2334943959 type Work @default.
- W2334943959 sameAs 2334943959 @default.
- W2334943959 citedByCount "57" @default.
- W2334943959 countsByYear W23349439592016 @default.
- W2334943959 countsByYear W23349439592017 @default.
- W2334943959 countsByYear W23349439592018 @default.
- W2334943959 countsByYear W23349439592019 @default.
- W2334943959 countsByYear W23349439592020 @default.
- W2334943959 countsByYear W23349439592021 @default.
- W2334943959 countsByYear W23349439592022 @default.
- W2334943959 countsByYear W23349439592023 @default.
- W2334943959 crossrefType "journal-article" @default.
- W2334943959 hasAuthorship W2334943959A5018452517 @default.
- W2334943959 hasAuthorship W2334943959A5044425152 @default.
- W2334943959 hasConcept C105702510 @default.
- W2334943959 hasConcept C114466953 @default.
- W2334943959 hasConcept C119857082 @default.
- W2334943959 hasConcept C126838900 @default.
- W2334943959 hasConcept C154945302 @default.
- W2334943959 hasConcept C162324750 @default.
- W2334943959 hasConcept C176217482 @default.
- W2334943959 hasConcept C19527891 @default.
- W2334943959 hasConcept C199360897 @default.
- W2334943959 hasConcept C201645570 @default.
- W2334943959 hasConcept C21547014 @default.
- W2334943959 hasConcept C2776673561 @default.
- W2334943959 hasConcept C31601959 @default.
- W2334943959 hasConcept C41008148 @default.
- W2334943959 hasConcept C509974204 @default.
- W2334943959 hasConcept C71924100 @default.
- W2334943959 hasConceptScore W2334943959C105702510 @default.
- W2334943959 hasConceptScore W2334943959C114466953 @default.
- W2334943959 hasConceptScore W2334943959C119857082 @default.
- W2334943959 hasConceptScore W2334943959C126838900 @default.
- W2334943959 hasConceptScore W2334943959C154945302 @default.
- W2334943959 hasConceptScore W2334943959C162324750 @default.
- W2334943959 hasConceptScore W2334943959C176217482 @default.
- W2334943959 hasConceptScore W2334943959C19527891 @default.
- W2334943959 hasConceptScore W2334943959C199360897 @default.
- W2334943959 hasConceptScore W2334943959C201645570 @default.
- W2334943959 hasConceptScore W2334943959C21547014 @default.
- W2334943959 hasConceptScore W2334943959C2776673561 @default.
- W2334943959 hasConceptScore W2334943959C31601959 @default.
- W2334943959 hasConceptScore W2334943959C41008148 @default.